Skip to main content

Banach Poisson–Lie Group Structure on \( \operatorname {U}( \mathcal {H})\)

  • Conference paper
  • First Online:
Geometric Methods in Physics XXXIX (WGMP 2022)

Part of the book series: Trends in Mathematics ((TM))

Included in the following conference series:

  • 177 Accesses

Abstract

We construct a Banach Poisson–Lie group structure on the unitary group of a separable complex Hilbert space.

This research was partially supported by joint National Science Centre, Poland (number 2020/01/Y/ST1/00123) and Fonds zur Förderung der wissenschaftlichen Forschung, Austria (number I 5015-N) grant “Banach Poisson–Lie groups and integrable systems.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andruchow, E., Larotonda, G., Recht, L.: Finsler geometry and actions of the p-Schatten unitary groups. Trans. Amer. Math. Soc. 362(1), 319–344 (2010). https://doi.org/10.1090/S0002-9947-09-04877-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Beltiţă, D., Goliński, T., Tumpach, A.B.: Queer Poisson brackets. J. Geom. Phys. 132, 358–362 (2018). https://doi.org/10.1016/j.geomphys.2018.06.013

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltiţă, D., Larotonda, G.: Unitary group orbits versus groupoid orbits of normal operators (2021). https://doi.org/10.48550/ARXIV.2111.04238

  4. Beltiţă, D., Odzijewicz, A.: Poisson geometrical aspects of the Tomita-Takesaki modular theory (2019). https://doi.org/10.48550/ARXIV.1910.14466

  5. Beltiţă, D., Ratiu, T.S., Tumpach, A.B.: The restricted Grassmannian, Banach Lie-Poisson spaces, and coadjoint orbits. J. Funct. Anal. 247(1), 138–168 (2007). https://doi.org/10.1016/j.jfa.2007.03.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabau, P., Pelletier, F.: Almost Lie structures on an anchored Banach bundle. J. Geom. Phys. 62(11), 2147–2169 (2012). https://doi.org/10.1016/j.geomphys.2012.06.005

    Article  MathSciNet  MATH  Google Scholar 

  7. Davidson, K.R.: Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1988)

    Google Scholar 

  8. De Bièvre, S., Genoud, F., Rota Nodari, S.: Orbital stability: analysis meets geometry. In: Nonlinear optical and atomic systems, Lecture Notes in Math., vol. 2146, pp. 147–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19015-0_3

  9. Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. Dokl. Akad. Nauk SSSR 268(2), 285–287 (1983)

    Google Scholar 

  10. Gohberg, I.C., Kreı̆n, M.G.: Theory and applications of Volterra operators in Hilbert space. Translations of Mathematical Monographs, Vol. 24. American Mathematical Society, Providence, R.I. (1970)

    Google Scholar 

  11. Goliński, T., Odzijewicz, A.: Hierarchy of Hamilton equations on Banach Lie-Poisson spaces related to restricted Grassmannian. J. Funct. Anal. 258(10), 3266–3294 (2010). https://doi.org/10.1016/j.jfa.2010.01.019

    Article  MathSciNet  MATH  Google Scholar 

  12. Grabowski, J.: A Poisson-Lie structure on the diffeomorphism group of a circle. Lett. Math. Phys. 32(4), 307–313 (1994). https://doi.org/10.1007/BF00761141

    Article  MathSciNet  MATH  Google Scholar 

  13. Grabowski, J., Kuś, M., Marmo, G.: Geometry of quantum systems: density states and entanglement. J. Phys. A 38(47), 10217–10244 (2005). https://doi.org/10.1088/0305-4470/38/47/011

    Article  MathSciNet  MATH  Google Scholar 

  14. Khesin, B., Zakharevich, I.: Poisson-Lie group of pseudodifferential symbols. Comm. Math. Phys. 171(3), 475–530 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Lie groups and complete integrability. I. Drinfeld bialgebras, dual extensions and their canonical representations. Ann. Inst. H. Poincaré Phys. Théor. 49(4), 433–460 (1988). http://www.numdam.org/item?id=AIHPB_1988__49_4_433_0

  16. Kwapień, S., Pełczyński, A.: The main triangle projection in matrix spaces and its applications. Studia Math. 34, 43–68 (1970). https://doi.org/10.4064/sm-34-1-43-67

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, J.H., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31(2), 501–526 (1990). http://projecteuclid.org/euclid.jdg/1214444324

    Article  MathSciNet  MATH  Google Scholar 

  18. Neeb, K.H., Sahlmann, H., Thiemann, T.: Weak Poisson structures on infinite dimensional manifolds and Hamiltonian actions. In: Lie theory and its applications in physics, Springer Proc. Math. Stat., vol. 111, pp. 105–135. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-55285-7

  19. Odzijewicz, A., Ratiu, T.S.: Banach Lie-Poisson spaces and reduction. Comm. Math. Phys. 243(1), 1–54 (2003). https://doi.org/10.1007/s00220-003-0948-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Pelletier, F., Cabau, P.: Convenient partial Poisson manifolds. J. Geom. Phys. 136, 173–194 (2019). https://doi.org/10.1016/j.geomphys.2018.10.017

    Article  MathSciNet  MATH  Google Scholar 

  21. Semenov-Tian-Shansky, M.A.: Classical r-matrices, Lax equations, Poisson Lie groups and dressing transformations. In: Field theory, quantum gravity and strings, II (Meudon/Paris, 1985/1986), Lecture Notes in Phys., vol. 280, pp. 174–214. Springer, Berlin (1987). https://doi.org/10.1007/3-540-17925-9_38

  22. Tumpach, A.B.: Banach Poisson-Lie groups and Bruhat-Poisson structure of the restricted Grassmannian. Comm. Math. Phys. 373(3), 795–858 (2020). https://doi.org/10.1007/s00220-019-03674-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Zakharevich, I.: The second Gelfand-Dickey bracket as a bracket on a Poisson-Lie Grassmannian. Comm. Math. Phys. 159(1), 93–119 (1994). http://projecteuclid.org/euclid.cmp/1104254492

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Barbora Tumpach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tumpach, A.B., Goliński, T. (2023). Banach Poisson–Lie Group Structure on \( \operatorname {U}( \mathcal {H})\). In: Kielanowski, P., Dobrogowska, A., Goldin, G.A., Goliński, T. (eds) Geometric Methods in Physics XXXIX. WGMP 2022. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-30284-8_22

Download citation

Publish with us

Policies and ethics