Skip to main content

Using Discretization and Numerical Methods of Problem 1D-3D-1D Model for Blood Vessel Walls with Navier-Stokes

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13772))

Included in the following conference series:

  • 458 Accesses

Abstract

This article describes a three-dimensional model of fluid flow a mathematical model of the circulatory system for the cardiovascular system and provides a basic framework for the mathematical representation of cumulative medical parameters such as total vascular area, blood volume, self-regulation, and effects on the upper and inner heart. This article presents a mathematical model of the circulatory system for the cardiovascular system and is the basis for a mathematical view of aggregated medical parameters such as total vascular area, blood volume, self-regulation, and effects on the upper and inner state of the heart. Concepts are given. Linear dependence of mathematical concepts, differential, integral differential, as well as logical-dynamic equations, Navier-Stokes problems, and mathematical apparatus for their practical application are given and the principle of operation of the program based on this mathematical model has used UML diagrams which consist of results of Navier-Stokes. The program given is the numerical results of Navier-Stokes 2D and 3D integral and differential equations on the basic diagram U, V, W, and parameters. In mathematical terms, linear dependencies, differential, integral, and differential equations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191, 561–582 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Formaggia, L., Moura, A., Nobile, F.: On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41(4), 743–769 (2007)

    Google Scholar 

  3. Papadakis, G.: Coupling 3D and 1D fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme. Commun. Numer. Methods Eng. 25, 533–551 (2009)

    Google Scholar 

  4. Bazant, M., Moffatt, H.: Exact solutions of the Navier-Stokes equations having steady vortex structures. J. Fluid Mech. 541, 55–64 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  6. Ethier, C.R., Steinman, D.: Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19(5), 369–375 (1994)

    Google Scholar 

  7. Kibler, J.L., Ma, M., Llabre, M.M.: Body mass index concerning cardiovascular recovery from psychological stress among trauma-exposed women. Eur. Arch. Psychiatry Clin. Neurosci. 270(11) (2020). https://doi.org/10.1007/s00406-019-01054-5

  8. Hadjinicolaou, M., Protopapas, E.: Separability of stokes equations in axisymmetric geometries. J. Appl. Math. Phys. 08, 315–348 (2020). https://doi.org/10.4236/jamp.2020.82026. https://www.researchgate.net/publication/339482274_Separability_of_Stokes_Equations_in_Axisymmetric_Geometries

  9. Pernice, M., Walker, H.F.: NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19(72), 302–318 (1998)

    Google Scholar 

  10. Electronic resource: Advanced Numerical Instruments 3D. http://sourceforge.net/projects/ani3d/

  11. Koshelev, V.B., Mukhin, S.I., Sosnin, N.V., Favorsky, A.P.: Mathematical Models of Quasi-One-Dimensional Hemodynamics. MAKS Press, Moscow (2010)

    Google Scholar 

  12. Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook on numerical analysis, Modeling of Living Systems. Elsevier, Amsterdam (2004)

    Google Scholar 

  13. Blanco, P.J., Feijoro, R.A., Urquiza, S.A.: A unified variational approach for coupling 3D–1D models and its blood flow applications. Comput. Methods Appl. Mech. Eng. 196, 4391–4410 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Urquiza, S.A., Blanco, P.J., Vernere, M.J., Feijoro, R.A.: Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Eng. 195, 4002–4017 (2006)

    Google Scholar 

  15. 1D fluid-structure interaction models for blood flow simulations. ESAIM Math. Model. Numer. Anal. 41(4), 743–769 (2007)

    Google Scholar 

  16. Sedov, L.I.: Mechanics of a continuous medium. Moscow: Science (1970)

    Google Scholar 

  17. Layton, W., Manica, C.C., Neda, M., Olshanskii, M.A., Rebholz, L.G.: On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228, 3433–3447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Olshanskii, M.A.: A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comput. Methods Appl. Mech. Eng. 191, 5515–5536 (2002)

    Google Scholar 

  19. Blanco, P.J., Deparis, S., Malossi, A.C.I.: On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems. J. Comput. Phys. (2013)

    Google Scholar 

  20. Konstantinovna, D.T.: Numerical modeling of blood flow in the presence of vascular implants or pathologies, Moscow, October 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qulmatova Sayyora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nurjabova, D., Sayyora, Q., Gulmira, P. (2023). Using Discretization and Numerical Methods of Problem 1D-3D-1D Model for Blood Vessel Walls with Navier-Stokes. In: Koucheryavy, Y., Aziz, A. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN 2022. Lecture Notes in Computer Science, vol 13772. Springer, Cham. https://doi.org/10.1007/978-3-031-30258-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30258-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30257-2

  • Online ISBN: 978-3-031-30258-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics