Skip to main content

Modelling Shrinkage of a Polymer Binder During Curing

  • Conference paper
  • First Online:
Mathematical Modeling and Simulation of Systems (MODS 2022)

Abstract

The quality of modern polymer composite materials and composite-based structures is largely determined by technological conditions of their production. The paper deals with the optimization of technological conditions of heat treatment of cured composite products, carried out based on the results of mathematical and computer modelling of thermochemical and thermophysical properties of materials, as well as heat transfer processes accompanied by corresponding physical and chemical transformations in the product. The results of the studies and subsequent mathematical modelling of shrinkage of the epoxy binder EA9396 during curing are presented. The experimental data are obtained using the differential scanning calorimetry. An analytical dependence describing the change in the degree of curing of a binder with a change in the conditions of product moulding has been proposed. The dependence makes it possible to determine the state of a polymer binder (viscous, viscoelastic, elastic) at any time of the curing process, to establish the point at which stresses occur in the cured structure as well as to detect the physical and mechanical properties of the composite corresponding to the degree of curing and viscosity. A model of polymer binder shrinkage during curing has been developed. The shrinkage model satisfactorily describes the experimental results. The curves constructed using the experimentally received reaction rate data and the analytical model differ by no more than 5%. The dependence of the shrinkage rate of the polymer binder on the reaction rate is presented. A software that allows obtaining the dependence of the degree of curing and shrinkage on time for a given temperature range has been developed. Based on the results received, the selection of the optimal curing mode can be carried out, which makes it possible to compensate shrinkage deformations with temperature ones and reduce technological stresses in the composite product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karpus, V., Ivanov, V., Dehtiarov, I., Zajac, J., Kurochkina, V.: Technological assurance of complex parts manufacturing. In: Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 51–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_6

  2. Otrosh, Y., Kovalov, A., Semkiv, O., Rudeshko, I., Diven, V.: Methodology remaining lifetime determination of the building structures. In: MATEC Web Conferences 2018, vol. 230, p. 02023 (2018). https://doi.org/10.1051/matecconf/201823002023

  3. Fomin, O., Lovskaya, A., Plakhtiy, A., Nerubatsky, V.: The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties 6(162), 89–96 (2017)

    Google Scholar 

  4. Galych, I., Antoshchenkov, R., Antoshchenkov, V., Lukjanov, I., Diundik, S., Kis, O.: Estimating the dynamics of a machine-tractor assembly considering the effect of the supporting surface profile. Eastern-Eur. J. Enterp. Technol. 1(7(109), 51–62 (2021). https://doi.org/10.15587/1729-4061.2021.225117

  5. Smetankina, N., Merkulova, A., Merkulov, D., Postnyi, O.: Dynamic response of laminate composite shells with complex shape under low-velocity impact. In: International Scientific and Technical Conference on Integrated Computer Technologies in Mechanical Engineering - Synergetic Engineering, ICTM 2020, vol. 188, pp. 267–276 (2021). https://doi.org/10.1007/978-3-030-66717-7_22

  6. Slyvynskyi, V.I., Sanin, A.F., Kharchenko, M.E., Kondratyev, A.V.: Thermally and dimensionally stable structures of carbon-carbon laminated composites for space applications. In: 65th International Astronautical Congress 2014, IAC 2014, vol. 8, pp. 5739–5751 (2014)

    Google Scholar 

  7. Rajak, D.K., Pagar, D.D., Menezes, P.L., Linul, E.: Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11(10), 1667 (2019). https://doi.org/10.3390/polym11101667

    Article  Google Scholar 

  8. Rodionov, V.V.: Optimization of molding the polymeric composite material with improved characteristics. Plast. Massy 3–4, 55–58 (2019). https://doi.org/10.35164/0554-2901-2019-3-4-55-58

    Article  Google Scholar 

  9. Saba, N., Jawaid, M.: A review on thermomechanical properties of polymers and fibers reinforced polymer composites. J. Ind. Eng. Chem. 67, 1–11 (2018). https://doi.org/10.1016/j.jiec.2018.06.018

    Article  Google Scholar 

  10. Tiwary, A., Kumar, R., Chohan, J.S.: A review on characteristics of composite and advanced materials used for aerospace applications. Mater. Today Proc. 51(1), 865–870 (2022). https://doi.org/10.1016/j.matpr.2021.06.276

    Article  Google Scholar 

  11. Hsissou, R., Seghiri, R., Benzekri, Z., Hilali, M., Rafik, M., Elharfi, A.: Polymer composite materials: a comprehensive review. Compos. Struct. 262, 113640 (2021). https://doi.org/10.1016/j.compstruct.2021.113640

    Article  Google Scholar 

  12. Gaidachuk, V.E., Kondratiev, A.V., Chesnokov, A.V.: Changes in the thermal and dimensional stability of the structure of a polymer composite after carbonization. Mech. Compos. Mater. 52(6), 799–806 (2017). https://doi.org/10.1007/s11029-017-9631-6

    Article  Google Scholar 

  13. Kombarov, V., Kryzhyvets, Y., Biletskyi, I., Tsegelnyk, Y., Aksonov, Y., Piddubna, L.: Numerical control of fiberglass pipe bends manufacturing. In: IEEE 2nd KhPI Week on Advanced Technology 2021, pp. 357–362 (2021). https://doi.org/10.1109/KhPIWeek53812.2021.9570068

  14. Li, D.N., Li, X.D., Dai, J.F., Xi, S.B.: A comparison of curing process-induced residual stresses and cure shrinkage in micro-scale composite structures with different constitutive laws. Appl. Compos. Mater. 25, 67–84 (2018). https://doi.org/10.1007/s10443-017-9608-6

    Article  Google Scholar 

  15. Yuan, Z.Y., Wang, Y.J., Yang, G.G., Tang, A.F., Yang, Z.C., Li, S.J., Li, Y., Song, D.L.: Evolution of curing residual stresses in composite using multi-scale method. Compos. Part B-Eng. 155, 49–61 (2018). https://doi.org/10.1016/j.compositesb.2018.08.012

    Article  Google Scholar 

  16. Carlone, P., Rubino, F., Paradiso, V., Tucci, F.: Multi-scale modeling and online monitoring of resin flow through dual-scale textiles in liquid composite molding processes. Int. J. Adv. Manuf. Technol. 96, 2215–2230 (2018). https://doi.org/10.1007/s00170-018-1703-9

    Article  Google Scholar 

  17. Lionetto, F., Moscatello, A., Totaro, G., Raffone, M., Maffezzoli, A.: Experimental and numerical study of vacuum resin infusion of stiffened carbon fiber reinforced panels. Materials 13(21) (2020). https://doi.org/10.3390/ma13214800

  18. Rocha, H., Semprimoschnig, C., Nunes, J.P.: Sensors for process and structural health monitoring of aerospace composites: a review. Eng. Struct. 237, 112231 (2021). https://doi.org/10.1016/j.engstruct.2021.112231

    Article  Google Scholar 

  19. Brauner, C., Frerich, T., Herrmann, A.S.: Cure-dependent thermomechanical modelling of the stress relaxation behaviour of composite materials during manufacturing. J. Compos. Mater. 51, 877–898 (2017). https://doi.org/10.1177/0021998316656924

    Article  Google Scholar 

  20. Cameron, C.J., Saseendran, S., Stig, F., Rouhi, M.: A rapid method for simulating residual stress to enable optimization against cure induced distortion. J. Compos. Mater. 55(26), 3799–3812 (2021). https://doi.org/10.1177/00219983211024341

    Article  Google Scholar 

  21. Muliana, A.H.: Spatial and temporal changes in physical properties of epoxy during curing and their effects on the residual stresses and properties of cured epoxy and composites. Appl. Eng. Sci. 7, 100061 (2021). https://doi.org/10.1016/j.apples.2021.100061

    Article  Google Scholar 

  22. Kondratiev, A., Píštěk, V., Smovziuk, L., Shevtsova, M., Fomina, A., Kučera, P.: Stress–strain behaviour of reparable composite panel with step–variable thickness. Polymers 13(21), 3830 (2021). https://doi.org/10.3390/polym13213830

    Article  Google Scholar 

  23. Startsev, O.V., Vapirov, Y.M., Lebedev, M.P., Kychkin, A.K.: Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mech. Compos. Mater. 56(2), 227–240 (2020). https://doi.org/10.1007/s11029-020-09875-5

    Article  Google Scholar 

  24. Deng, B., Shi, Y.Y., Yu, T., Zhao, P.: Influence mechanism and optimization analysis of technological parameters for the composite prepreg tape winding process. Polymers 12(8), 1843 (2020). https://doi.org/10.3390/polym12081843

    Article  Google Scholar 

  25. Budelmann, D., Schmidt, C., Meiners, D.: Prepreg tack: a review of mechanisms, measurement, and manufacturing implication. Polym. Compos. 41(9), 3440–3458 (2020). https://doi.org/10.1002/pc.25642

    Article  Google Scholar 

  26. Brinson, H.F., Brinson, L.C.: Polymer Engineering Science and Viscoelasticity: An Introduction, 2nd edn., p. 482. Springer (2015). https://doi.org/10.1007/978-1-4899-7485-3

  27. Baran, I., Cinar, K., Ersoy, N., Akkerman, R., Hattel, J.H.: A review on the mechanical modeling of composite manufacturing processes. Arch. Comput. Methods Eng. 24, 365–395 (2017). https://doi.org/10.1007/s11831-016-9167-2

    Article  Google Scholar 

  28. Shah, V.: Handbook of Plastics Testing and Failure Analysis, 4th edn. Wiley, Hoboken (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Kondratiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kondratiev, A., Shevtsova, M., Vambol, O., Tsaritsynskyi, A., Nabokina, T. (2023). Modelling Shrinkage of a Polymer Binder During Curing. In: Shkarlet, S., et al. Mathematical Modeling and Simulation of Systems. MODS 2022. Lecture Notes in Networks and Systems, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-30251-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30251-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30250-3

  • Online ISBN: 978-3-031-30251-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics