Skip to main content

Mathematical Model for Assessing the Quality Level of Formation of Stochastic Competence of Higher Education Acquires

  • Conference paper
  • First Online:
Mathematical Modeling and Simulation of Systems (MODS 2022)

Abstract

The article analyzes the existing approaches to assessing the level of students' competencies (competence) formation, which proves the need to use a differentiated approach in the development of an appropriate mathematical model. In the process of creating a mathematical model for assessing the level of stochastic competence formation of higher education students, criteria for assessing stochastic competence were selected: professional-cognitive; conative; motivational-valuable. The indicators of formation and the basis of the formation of structural components of stochastic competence are highlighted.

The mathematical model for assessing the level of stochastic competence formation is created using the method of implicit modeling based on dimensional analysis analogy. It is an integrated assessment of the educational activity results of the higher education student taking into account his personal and motivational characteristics. The model establishes the dependence between the assessment of the stochastic competence formation level and the following factors: component-wise assessment of the educational activity results of the higher education student; assessment of the personal characteristics of the higher education student; assessment of the motivation of the student to study stochastics. The levels of competence formation: reproductive, productive, heuristic, creative were defined.

To assess the statistical significance of experimental data, the level of stochastic competence formation in higher education among graduates in the specialty 051 «Economics» was evaluated. The Mann-Whitney U test was used. The results of the experiment confirmed that the application of the developed model provides an objective and reliable assessment of the stochastic competence level formation of higher education students. According to the results of statistical analysis, the proposed model is adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trunova, O.: The model of the life cycle of stochastic competences. In: Scientific Notes Kirovohrad State Pedagogical University after V. Vynnychenko. Series: The Problems of the methodology of Physical, Mathematical and Technological education, vol. 8(3), pp. 78–89 (2015).

    Google Scholar 

  2. Lytvynov, V.V., Kharchenko, V.S., Lytvyn, S.V., Saveliev, M.V., Trunova, E.V., Skiter, I.S.: Tool-Based Support of University-Industry Cooperation in IT-Engineering. Chernihiv National University of Technology (2015)

    Google Scholar 

  3. Stynska, V.V., Yashchyshyn, Z.M., Klishch, I.P.: Competency-based approach in Ukrainian vocational training. In: Scientific journal of M.P. Dragomanov National Pedagogical University. Series 5, Pedagogical Sciences: Realities and Perspectives, vol. 79(2), pp. 139–142 (2021). https://doi.org/10.31392/NPU-nc.series5.2021.79.2.30.

  4. Blaskova, M., Blasko, R., Kucharcikova, A.: Competences and competence model of university teachers. In: Procedia – Social and Behavioral Sciences, vol. 159, pp. 457–467 (2014). https://doi.org/10.1016/j.sbspro.2014.12.407.

  5. Poskrypko, Y., Danchenko O.: Competence and competency: consensus. Sci. Notes «KROK» Univ. 3(55), 117–127 (2019). https://doi.org/10.31732/2663-2209-2019-55-117-127.

  6. El Asame, M., Wakrim, M.: Towards a competency model: a review of the literature and the competency standards. Educ. Inf. Technol. 23, 1–12 (2018). https://doi.org/10.1007/s10639-017-9596-z

  7. Kuzminska, O., Mazorchuk, M., Morze, N., Pavlenko, V., Prokhorov, A.: Study of digital competence of the students and teachers in Ukraine. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) Information and Communication Technologies in Education, Research, and Industrial Applications, vol. 1007, pp. 148–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13929-2_8

    Chapter  Google Scholar 

  8. Dzwigol, H., DzwigolBarosz, M., Miskiewicz, R., Kwilinski, A.: Manager competency assessment model in the conditions of industry 4.0. Entrepreneursh. Sustainabil. Issues 7(4), 2630–2644 (2020). https://doi.org/10.9770/jesi.2020.7.4(5)

    Article  Google Scholar 

  9. Malyar, M., Shtymak, A.: Model of determining the competence of graduate with the use of fuzzy sets. In: Management of Development of Complex Systems, vol. 22(1), pp. 151–157 (2015). https://doi.org/10.13140/RG.2.1.2630.8567.

  10. Zendler, A.: cpm.4.CSE/IRT: compact process model for measuring competences in computer science education based on IRT models. Educ. Inf. Technol. 24(1), 843–884 (2019). https://doi.org/10.1007/s10639-018-9794-3

    Article  Google Scholar 

  11. Dzyamko, V., Mesarosh, L.: Formation of stochastic competence through the implementation of interpersonal relationships. Sci. Bull. Uzhhorod Univ. Ser. «Pedagogy. Soc. Work» 0(1(42)), 59–63 (2018). https://doi.org/10.24144/2524-0609.2018.42.59-63

    Article  Google Scholar 

  12. Zadorozhna T.M., Rudenko I.B.: Development of stochastic competence in the context of preparation of specialists of finance - economic direction. In: Collection of Research Papers «Pedagogical Sciences», vol. 66, pp. 305–310 (2014)

    Google Scholar 

  13. Kolosok, I.O, Demin, O.A.: «Knowledge», «skills» and «skills» as pedagogical category and methodological factors of its formation. In: National University of Life and Environmental Sciences of Ukraine. Series «Machinery & Energetics», vol. 275, pp. 216–227 (2017)

    Google Scholar 

  14. Lukianova, V., Shutyak, Y., Polozova, V.: Expert assessment method in socio-economic research and Scales transformations. In: Economics Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019) (2019). https://doi.org/10.2991/mdsmes-19.2019.67.

  15. Kuneš, J.: Similarity and Modeling in Science and Engineering. Cambridge International Science Publishing Ltd, Cambridge (2012). https://doi.org/10.1007/978-1-907343-78-0

    Book  Google Scholar 

  16. The higher education standard to the specialty 051 «Economics» of the first (bachelor's) level of higher education. https://mon.gov.ua/storage/app/media/vishchaosvita/zatverdzeni%20standarty/12/21/051-ekonomika-bakalavr.pdf. Accessed 10 May 2022

  17. Saaty, R.W.: The analytic hierarchy process—what it is and how it is used. Math. Modelling 9(3–5), 161–176 (1987). https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Bergmann, R., Ludbrook, J., Spooren, W.P.J.M.: Different outcomes of the Wilcoxon—Mann—Whitney test from different statistics packages. Am. Statist. 54(1), 72–77 (2000). https://doi.org/10.1080/00031305.2000.10474513

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Trunova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trunova, E., Mamchurovskyi, V., Pryschepa, D., Akymenko, A., Bilous, I. (2023). Mathematical Model for Assessing the Quality Level of Formation of Stochastic Competence of Higher Education Acquires. In: Shkarlet, S., et al. Mathematical Modeling and Simulation of Systems. MODS 2022. Lecture Notes in Networks and Systems, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-30251-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30251-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30250-3

  • Online ISBN: 978-3-031-30251-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics