Skip to main content

Exploring the Role of Plant Secondary Metabolites for Aphrodisiacs

  • Living reference work entry
  • First Online:
Plant Specialized Metabolites

Abstract

Plants produce many secondary metabolites that lead to defensive mechanisms and regulate signaling for defense against herbivores, pests, and diseases. The plant secondary metabolites are made of polyphenolic compounds, such as flavonoids, alkaloids, saponins, tannins, glycosides, etc., which are new lead molecules in drug discovery research of aphrodisiacs. Plants and their formulations (external, oral solid and liquid dosage) have been used traditionally to treat various issues, including male penile erectile dysfunction (ED). ED is a chronic disorder characterized by the inability to achieve and sustain a penile erection, resulting in unsatisfying sexual intercourse. This chapter presents a brief overview of male inadequacy, factors influencing the induction of pathophysiology of ED, and corrective modalities and also discusses currently available treatment strategies and their adverse reactions and alternative therapies for safely treating ED.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACE:

Angiotensin-converting enzyme

AChE:

Acetylcholinesterase

Akt:

Protein kinase B

cGMP:

L-arginine-nitric oxide-guanylyl cyclase-cyclic guanosine monophosphate

COX2:

Cyclooxygenase-2

ED:

Erectile dysfunction

ER:

Estrogen receptor

eNOS:

Endothelial nitric oxide synthase

FDA:

Food and Drug Administration

FSH:

Follicle-stimulating hormone

iNOS:

Inducible nitric oxide synthase

LH:

Luteinizing hormone

NF-kB:

Nuclear factor kappa B

nNOS:

Neuronal nitric oxide synthase

NO:

Nitrous oxide

PDE5:

Phosphodiesterase type 5 enzyme

PI3K:

Phosphoinositide 3-kinases

PKG:

Protein kinase G

ROS:

Reactive oxygen species

SD:

Sexual dysfunction

References

  1. Delle Fave A, Massimini F, Bassi M (2011) Psychological selection and optimal experience across cultures: social empowerment through personal growth, vol 2. Springer Science & Business Media

    Google Scholar 

  2. Gott M, Hinchliff S (2003) How important is sex in later life? The views of older people. Soc Sci Med 56(8):1617–1628

    Article  PubMed  Google Scholar 

  3. Lawrance KA, Byers ES (1995) Sexual satisfaction in long-term heterosexual relationships: the interpersonal exchange model of sexual satisfaction. Pers Relat 2(4):267–285

    Article  Google Scholar 

  4. Monga M et al (2004) Impact of infertility on quality of life, marital adjustment, and sexual function. Urology 63(1):126–130

    Article  PubMed  Google Scholar 

  5. Isidro ML (2012) Sexual dysfunction in men with type 2 diabetes. Postgrad Med J 88(1037):152–159

    Article  PubMed  CAS  Google Scholar 

  6. de Kuijper G et al (2013) Determinants of physical health parameters in individuals with intellectual disability who use long-term antipsychotics. Res Dev Disabil 34(9):2799–2809

    Article  PubMed  Google Scholar 

  7. Laumann EO, Paik A, Rosen RC (1999) Sexual dysfunction in the United States: prevalence and predictors. JAMA 281(6):537–544

    Article  PubMed  CAS  Google Scholar 

  8. Araujo AB et al (1998) The relationship between depressive symptoms and male erectile dysfunction: cross-sectional results from the Massachusetts Male Aging Study. Psychosom Med 60(4):458–465

    Article  PubMed  CAS  Google Scholar 

  9. Gareri P et al (2014) Erectile dysfunction in the elderly: an old widespread issue with novel treatment perspectives. Int J Endocrinol 2014:878670

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kubin M, Wagner G, Fugl-Meyer AR (2003) Epidemiology of erectile dysfunction. Int J Impot Res 15(1):63–71

    Article  PubMed  CAS  Google Scholar 

  11. Rajendran R, Cummings M (2012) Erectile dysfunction: a weighty issue? Pract Diab 29(1):32–35

    Article  Google Scholar 

  12. Solomon H, Man J, Jackson G (2003) Erectile dysfunction and the cardiovascular patient: endothelial dysfunction is the common denominator. Heart 89(3):251–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Braun M et al (2000) Epidemiology of erectile dysfunction: results of the ‘Cologne Male Survey’. Int J Impot Res 12(6):305–311

    Article  PubMed  CAS  Google Scholar 

  14. Mirone V et al (2022) Erectile dysfunction: from pathophysiology to clinical assessment. In: Practical clinical andrology. Springer International Publishing Cham, pp 25–33

    Google Scholar 

  15. Yafi FA et al (2016) Erectile dysfunction. Nat Rev Dis Primers 2(1):1–20

    Article  Google Scholar 

  16. Hellstrom WJ et al (2010) Implants, mechanical devices, and vascular surgery for erectile dysfunction. J Sex Med 7(1_Part_2):501–523

    Article  PubMed  Google Scholar 

  17. Matthews HB, Lucier GW, Fisher KD (1999) Medicinal herbs in the United States: research needs. Environ Health Perspect 107(10):773–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Thomas JA (2002) Pharmacological aspects of erectile dysfunction. The Jpn J Pharmacol 89(2):101–112

    Article  PubMed  CAS  Google Scholar 

  19. Andersson K-E (2003) Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J Urol 170(2):S6–S14

    PubMed  Google Scholar 

  20. Weiss HD (1972) The physiology of human penile erection. Ann Intern Med 76(5):793–799

    Article  PubMed  CAS  Google Scholar 

  21. Trigo-Rocha F et al (1993) The role of cyclic adenosine monophosphate, cyclic guanosine monophosphate, endothelium and nonadrenergic, noncholinergic neurotransmission in canine penile erection. J Urol 149(4):872–877

    Article  PubMed  CAS  Google Scholar 

  22. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75(2):199–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21(3):83–86

    Article  PubMed  CAS  Google Scholar 

  24. Martin K, Barrett J (2002) Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 21(2):71–75

    Article  PubMed  CAS  Google Scholar 

  25. Guo W et al (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Med Cell Longev 2012:878052

    Article  Google Scholar 

  26. Ganesan V et al (2018) Optimization and analysis of microwave-assisted extraction of bioactive compounds from Mimosa pudica L. using RSM & ANFIS modeling. J Food Meas Charact 12:228–242

    Article  Google Scholar 

  27. Sastre J, Pallardó FV, Viña J (2000) Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life 49(5):427–435

    Article  PubMed  CAS  Google Scholar 

  28. Brieger K et al (2012) Reactive oxygen species: from health to disease. Swiss Med Wkly 142(3334):w13659–w13659

    PubMed  CAS  Google Scholar 

  29. Cartledge J, Eardley I, Morrison J (2001) Nitric oxide-mediated corpus cavernosal smooth muscle relaxation is impaired in ageing and diabetes. BJU Int 87(4):402–407

    Article  PubMed  CAS  Google Scholar 

  30. Bivalacqua TJ et al (2003) Endothelial dysfunction in erectile dysfunction: role of the endothelium in erectile physiology and disease. J Androl 24(S6):S17–S37

    Article  PubMed  CAS  Google Scholar 

  31. Alahmar AT (2019) Role of oxidative stress in male infertility: an updated review. J Hum Reproduct Sci 12(1):4

    Article  CAS  Google Scholar 

  32. Bui AD et al (2018) Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 50(8):e13012

    Article  PubMed  CAS  Google Scholar 

  33. Kalimuthu AK et al (2021) Pharmacoinformatics-based investigation of bioactive compounds of Rasam (South Indian recipe) against human cancer. Sci Rep 11(1):21488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Adewoyin M et al (2017) Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 5(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sheweita S, Salama B, Hassan M (2015) Erectile dysfunction drugs and oxidative stress in the liver of male rats. Toxicol Rep 2:933–938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Evans J (2014) Aphrodisiacs, fertility and medicine in early modern England, vol 89. Boydell & Brewer Ltd.

    Google Scholar 

  37. Kotta S, Ansari SH, Ali J (2013) Exploring scientifically proven herbal aphrodisiacs. Pharmacogn Rev 7(13):1

    PubMed  PubMed Central  Google Scholar 

  38. Huang SA, Lie JD (2013) Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. Pharmacy Ther 38(7):407

    Google Scholar 

  39. Tharakan B, Manyam BV (2005) Botanical therapies in sexual dysfunction. Phytother Res 19(6):457–463

    Article  PubMed  Google Scholar 

  40. Balkrishna A et al (2019) Ancient Indian rishi’s (Sages) knowledge of botany and medicinal plants since Vedic period was much older than the period of Theophrastus, A case study—Who was the actual father of botany. Int J Unani Integr Med 3:40–44

    Article  Google Scholar 

  41. Maxwell KE (2013) A sexual odyssey: from forbidden fruit to cybersex. Springer

    Google Scholar 

  42. Lim PH (2017) Asian herbals and aphrodisiacs used for managing ED. Transl Androl Urol 6(2):167

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chauhan NS et al (2014) A review on plants used for improvement of sexual performance and virility. Biomed Res Int 2014:868062

    Article  PubMed  PubMed Central  Google Scholar 

  44. Selvaraj K et al (2022) Impact of physicochemical parameters on effective extraction of bioactive compounds from natural sources: an overview. Curr Bioact Compd 18(4):11–27

    Article  Google Scholar 

  45. Ongwisespaiboon O, Jiraungkoorskul W (2017) Fingerroot, Boesenbergia rotunda and its aphrodisiac activity. Pharmacogn Rev 11(21):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Tang X et al (2017) In vitro and in vivo aphrodisiac properties of the seed extract from Allium tuberosum on corpus cavernosum smooth muscle relaxation and sexual behavior parameters in male Wistar rats. BMC Complement Altern Med 17(1):1–10

    Article  CAS  Google Scholar 

  47. Sangeetha KS et al (2016) Flavonoids: therapeutic potential of natural pharmacological agents. Int J Pharm Sci Res 7(10):3924

    CAS  Google Scholar 

  48. Münzel T et al (2005) Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol 25(8):1551–1557

    Article  PubMed  Google Scholar 

  49. Couture R et al (2020) Luteolin modulates gene expression related to steroidogenesis, apoptosis, and stress response in rat LC540 tumor Leydig cells. Cell Biol Toxicol 36:31–49

    Article  PubMed  Google Scholar 

  50. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  52. Cormier M et al (2018) Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells. Cell Biol Toxicol 34:23–38

    Article  PubMed  CAS  Google Scholar 

  53. Samarghandian S, Afshari JT, Davoodi S (2011) Chrysin reduces proliferation and induces apoptosis in the human prostate cancer cell line pc-3. Clinics 66(6):1073–1079

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang XJ (2011) Natural flavonoids in StAR gene expression and testosterone biosynthesis in Leydig cell aging. Basic and Clinical Endocrinology Up-to-Date

    Google Scholar 

  55. Abd-Allah ER, Abd El-Rahman HA (2023) Ameliorative effects of nano Moringa on fluoride-induced testicular damage via down regulation of the StAR gene and altered steroid hormones. Reprod Biol 23(1):100724

    Article  PubMed  CAS  Google Scholar 

  56. Fan G-W et al (2013) Anti-inflammatory activity of baicalein in LPS-stimulated RAW264. 7 macrophages via estrogen receptor and NF-κB-dependent pathways. Inflammation 36:1584–1591

    Article  PubMed  CAS  Google Scholar 

  57. Chen Y et al (2020) Baicalein alleviates erectile dysfunction associated with streptozotocin-induced type I diabetes by ameliorating endothelial nitric oxide synthase dysfunction, inhibiting oxidative stress and fibrosis. J Sex Med 17(8):1434–1447

    Article  PubMed  CAS  Google Scholar 

  58. Palanichamy C et al (2022) Aphrodisiac performance of bioactive compounds from Mimosa pudica Linn.: In Silico molecular docking and dynamics simulation approach. Molecules 27(12):3799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Martin LJ, Touaibia M (2020) Improvement of testicular steroidogenesis using flavonoids and isoflavonoids for prevention of late-onset male hypogonadism. Antioxidants 9(3):237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Messina M (2010) Soybean isoflavone exposure does not have feminizing effects on men: a critical examination of the clinical evidence. Fertil Steril 93(7):2095–2104

    Article  PubMed  CAS  Google Scholar 

  61. Messina MJ, Wood CE (2008) Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary. Nutr J 7:1–11

    Article  Google Scholar 

  62. Marraudino M et al (2019) Sexually dimorphic effect of genistein on hypothalamic neuronal differentiation in vitro. Int J Mol Sci 20(10):2465

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marraudino M et al (2020) Sexually dimorphic effect of genistein on hypothalamic neuronal differentiation in vitro. Eur J Histochem 64(Supplement 1):5–5

    Google Scholar 

  64. Eumkeb G et al (2017) The synergy effect of daidzein and genistein isolated from Butea superba Roxb. on the reproductive system of male mice. Nat Prod Res 31(6):672–675

    Article  PubMed  CAS  Google Scholar 

  65. Adefegha SA et al (2018) Quercetin, rutin, and their combinations modulate penile phosphodiesterase-5′, arginase, acetylcholinesterase, and angiotensin-I-converting enzyme activities: a comparative study. Comp Clin Pathol 27:773–780

    Article  CAS  Google Scholar 

  66. Zuiter A (2014) Proanthocyanidin: chemistry and biology: from phenolic compounds to proanthocyanidins. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier

    Google Scholar 

  67. Rai A et al (2018) Evaluation of the aphrodisiac potential of a chemically characterized aqueous extract of Tamarindus indica pulp. J Ethnopharmacol 210:118–124

    Article  PubMed  CAS  Google Scholar 

  68. Fouad AA, Refaie MM, Abdelghany MI (2019) Naringenin palliates cisplatin and doxorubicin gonadal toxicity in male rats. Toxicol Mech Methods 29(1):67–73

    Article  PubMed  CAS  Google Scholar 

  69. Vyas NY, Raval MA (2016) Aphrodisiac and spermatogenic potential of alkaloidal fraction of Hygrophila spinosa T. Ander in rats. J Ethnopharmacol 194:947–953

    Article  PubMed  CAS  Google Scholar 

  70. Anyanwu EG et al (2021) Effect of ethanolic rind extract of Citrullus lanatus on hypothalamic-pituitary-gonadal axis structures, sexual behaviour and hormones of female Wistar rats. J Pharmacogn Phytochem 10(4):60–65

    Article  CAS  Google Scholar 

  71. Wagner U et al (1996) Effects of selective and non-selective phosphodiesterase inhibitors on tracheal mucus secretion in the rat. Eur J Pharmacol 298(3):265–270

    Article  PubMed  CAS  Google Scholar 

  72. Debnath B et al (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72

    Article  CAS  Google Scholar 

  73. Sabo S et al (2018) Ethnobotanical survey of medicinal plants used as aphrodisiacs in Bauchi local government area. J Complement Altern Med Res. https://doi.org/10.9734/JOCAMR/2017/39229

  74. Yakubu MT, Olutoye AF (2016) Aphrodisiac activity of aqueous extract of Anthonotha macrophylla P. Beauv. leaves in female Wistar rats. J Integr Med 14(5):400–408

    Article  PubMed  Google Scholar 

  75. Song X, Hu S (2009) Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine 27(36):4883–4890

    Article  PubMed  CAS  Google Scholar 

  76. Dasofunjo K, Asuk A, Nku C (2020) Evaluating the effect of ethanol leaf extract of Gongronema latifolium on some reproductive hormones of male Wistar rats. GSC Biol Pharm Sci 12(3):166–173

    Article  CAS  Google Scholar 

  77. MacKay D (2004) Nutrients and botanicals for erectile dysfunction: examining the evidence. Altern Med Rev 9(1):4–16

    Google Scholar 

  78. Chhatre S et al (2014) Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev 8(15):45

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvaraj Kunjiappan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kunjiappan, S., Pandian, S.R.K., Panneerselvam, T., Pavadai, P., Kabilan, S.J., Sankaranarayanan, M. (2023). Exploring the Role of Plant Secondary Metabolites for Aphrodisiacs. In: Mérillon, JM., Ramawat, K.G. (eds) Plant Specialized Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-30037-0_16-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30037-0_16-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30037-0

  • Online ISBN: 978-3-031-30037-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics