Skip to main content

Multi-objectivization Relaxes Multi-funnel Structures in Single-objective NK-landscapes

  • Conference paper
  • First Online:
Book cover Evolutionary Computation in Combinatorial Optimization (EvoCOP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13987))

  • 279 Accesses

Abstract

This paper investigated the impacts of multi-objectivization on solving combinatorial single-objective NK-landscape problems with multiple funnel structures. Multi-objectivization re-formulates a single-objective target problem into a multi-objective problem with a helper problem to suppress the difficulty of the target problem. This paper analyzed the connectivity of two funnels involving global optima in the target and the helper NK-landscape problems via the Pareto local optimal solutions in the multi-objectivized problem. Experimental results showed that multi-objectivization connects the two funnels with global optima of the target and the helper problems as a single bridging domain consisting of the Pareto local optimal solutions. Also, this paper proposed an algorithm named the multi-objectivized local search (MOLS) that searched for the global optimum of the target problem from the global optimum of an artificially generated helper problem via the Pareto local optimal solutions. Experimental results showed that the proposed MOLS achieved a higher success rate of the target single-objective optimization than iterative local search algorithms on target NK-landscape problems with multiple funnels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre, H.E., Tanaka, K.: Insights on properties of multiobjective MNK-landscapes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 1, pp. 196–203. IEEE (2004)

    Google Scholar 

  2. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler, E.: Do additional objectives make a problem harder? In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 765–772 (2007)

    Google Scholar 

  3. Deb, K., Saha, A.: Finding multiple solutions for multimodal optimization problems using a multi-objective evolutionary approach. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 447–454 (2010)

    Google Scholar 

  4. Garza-Fabre, M., Toscano-Pulido, G., Rodriguez-Tello, E.: Multi-objectivization, fitness landscape transformation and search performance: a case of study on the HP model for protein structure prediction. Eur. J. Oper. Res. 243(2), 405–422 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jensen, M.T.: Helper-objectives: using multi-objective evolutionary algorithms for single-objective optimisation. J. Math. Modell. Algorithms 3(4), 323–347 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theoret. Biol. 128(1), 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  7. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-objective problems by multi-objectivization. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_19

    Chapter  Google Scholar 

  8. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19

    Chapter  Google Scholar 

  9. McMenemy, P., Veerapen, N., Ochoa, G.: How perturbation strength shapes the global structure of TSP fitness landscapes. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol. 10782, pp. 34–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77449-7_3

    Chapter  Google Scholar 

  10. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_20

    Chapter  Google Scholar 

  11. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562 (2008)

    Google Scholar 

  12. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16

    Chapter  Google Scholar 

  13. Thomson, S.L., Daolio, F., Ochoa, G.: Comparing communities of optima with funnels in combinatorial fitness landscapes. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 377–384 (2017)

    Google Scholar 

  14. Thomson, S.L., Ochoa, G.: On funnel depths and acceptance criteria in stochastic local search. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 287–295 (2022)

    Google Scholar 

  15. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35533-2_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tanaka, S., Takadama, K., Sato, H. (2023). Multi-objectivization Relaxes Multi-funnel Structures in Single-objective NK-landscapes. In: Pérez Cáceres, L., Stützle, T. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2023. Lecture Notes in Computer Science, vol 13987. Springer, Cham. https://doi.org/10.1007/978-3-031-30035-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30035-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30034-9

  • Online ISBN: 978-3-031-30035-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics