Skip to main content

Biodiversity and Ecosystem Functions as Pillars of BioCities

  • Chapter
  • First Online:
Transforming Biocities

Part of the book series: Future City ((FUCI,volume 20))

Abstract

The BioCities concept builds on the integration of natural and human processes in urban design, with natural biotic and abiotic factors and processes integrated with the development of constructed features to provide for human well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts R, Stas M, Vanlessen N, Hendrickx M, Bruffaerts N, Hoebeke L, Dendoncker N, Dujardin S, Saenen ND, Nieuwenhuyse A, Aerts JM, Orshoven J, Nawrot TS, Somers B (2020) Residential green space and seasonal distress in a cohort of tree pollen allergy patients. Int J Hyg Environ Health 223(1):71–79

    Article  PubMed  Google Scholar 

  • Alterio E, Cocozza C, Chirici G, Rizzi A, Sitzia T (2020) Preserving air pollution forest archives accessible through dendrochemistry. J Environ Manag 264:110462

    Article  CAS  Google Scholar 

  • Alvey AA (2006) Promoting and preserving biodiversity in the urban forest. Urban Forestry Urban Greening 5:195–201

    Article  Google Scholar 

  • Andenæs E, Time B, Muthanna T, Asphaug S, Kvande T (2021) Risk reduction framework for blue-green roofs. Buildings 11:185. https://doi.org/10.3390/buildings11050185

    Article  Google Scholar 

  • Anton V, Hartley S, Geldenhuis A, Wittmer HU (2018) Monitoring the mammalian fauna of urban areas using remote cameras and citizen science. J Urban Ecol 4(1):1–9

    Article  Google Scholar 

  • Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: key challenges for urban green space management. Front Ecol Environ 15(4):189–196

    Article  Google Scholar 

  • Bassuk N (2017) Site assessment: the key to sustainable urban landscape establishment. In: Ferrini F, Konijnendijk van den Bosch CC, Fini A (eds) Routledge handbook of urban forestry. ISBN: 978-1-138-64728-2

    Google Scholar 

  • Berry R, Livesley SJ, Aye L (2013) Tree canopy shade impacts on solar irradiance received by building walls and their surface temperature. Build Environ 69:91–100

    Article  Google Scholar 

  • Beryani A, Goldstein A, Al-Rubaei AM, Viklander M, Hunt WF III, Blecken GT (2021) Survey of the operational status of twenty-six urban stormwater biofilter facilities in Sweden. J Environ Manag 297:113375

    Article  Google Scholar 

  • Bosker M (2022) City origins. Reg Sci Urban Econ 94:103677

    Article  Google Scholar 

  • Branco M, Nunes P, Roques A, Fernandes MR, Orazio C, Jactel H (2019) Urban trees facilitate the establishment of non-native forest insects. NeoBiota 52:25–46. https://doi.org/10.3897/neobiota.52.36358

    Article  Google Scholar 

  • Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM (2011) Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol Evol 26:541–549

    Article  PubMed  Google Scholar 

  • Cambria VE, Campagnaro T, Trentanovi G, Testolin R, Attorre F, Sitzia T (2021) Citizen science data to measure human use of green areas and forests in European cities. Forests 12:779. https://doi.org/10.3390/f12060779

    Article  Google Scholar 

  • Campisano A, Butler D, Ward S, Burns MJ, Friedler E, DeBusk K, Fisher-Jeffes LN, Ghisi E, Rahman A, Furumai H, Han M (2017) Urban rainwater harvesting systems: research, implementation and future perspectives. Water Res 115:195–209. https://doi.org/10.1016/j.watres.2017.02.056

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67. https://doi.org/10.1038/nature11148

    Article  CAS  PubMed  Google Scholar 

  • Castellar JAC, Popartan LA, Pueyo-Ros J, Atanasova N, Langergraber G, Säumel I, Corominas L, Comas J, Acuña V (2021) Nature-based solutions in the urban context: terminology, classification and scoring for urban challenges and ecosystem services. Sci Total Environ 779:146237

    Article  CAS  PubMed  Google Scholar 

  • Concepción ED, Moretti M, Altermatt F, Nobis MP, Obrist MK (2015) Impacts of urbanisation on biodiversity: the role of species mobility, degree of specialisation and spatial scale. Oikos 124(12):1571–1582

    Article  Google Scholar 

  • da Silva CM, Corrêa SM, Arbilla G (2018) Isoprene emissions and ozone formation in urban conditions: a case study in the city of Rio de Janeiro. Bull Environ Contam Toxicol 100(1):184–188

    Article  PubMed  Google Scholar 

  • De Vreese R, Leys M, Fontaine CM, Dendoncker N (2016) Social mapping of perceived ecosystem services supply: the role of social landscape metrics and social hotspots for integrated ecosystem services assessment, landscape planning and management. Ecol Indic 73:517–533

    Article  Google Scholar 

  • Demuzere M, Orru K, Heidrich O, Olazabal E, Geneletti D, Orru H, Bhave AG, Mittal N, Feliu E, Faehnle M (2014) Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure. J Environ Manag 146:107–115

    Article  CAS  Google Scholar 

  • Diamond J (1997) Guns, germs, and steel. W. W. Norton, New York. ISBN: 9780099302780

    Google Scholar 

  • Dorst H, van der Jagt A, Raven R, Runhaar H (2019) Urban greening through nature-based solutions: key characteristics of an emerging concept. Sustain Cities Soc 49:101620

    Article  Google Scholar 

  • Downing Day S, Harris JR (2017). Improving soil quality for urban forests. In: Ferrini F, Konijnendijk van den Bosch CC, Fini A (eds) Routledge handbook of urban forestry. Routledge, London

    Google Scholar 

  • Ehrenstein V, Mutius V, Kries V (2000) Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy 30(2):187–193

    Article  Google Scholar 

  • Elands BHM, Vierikko K, Andersson E, Fischer LK, Gonçalves P, Haase D, Kowarik I, Luz AC, Niemelä J, Santos-Reis M, Wiersum KF (2019) Biocultural diversity: a novel concept to assess human-nature interrelations, nature conservation and stewardship in cities. Urban Forestry Urban Greening 40:29–34. https://doi.org/10.1016/j.ufug.2018.04.006

    Article  Google Scholar 

  • Ellison D, Morris CE, Locatelli B, Sheil D, Cohen J, Murdiyarso D, Gutierrez V, van Noordwijk M, Creed IF, Pokorny J, Gaveau D, Spracklen DV, Bargués Tobella A, Ilstedt U, Teuling AJ, Gebreyohannis Gebrehiwot S, Sands DC, Muys B, Verbist B, Springgay E, Sugandi Y, Sullivan CA (2017) Trees, forests and water: cool insights for a hot world. Glob Environ Chang 43:51–61

    Article  Google Scholar 

  • Environmental Protection Agency (EPA) (1993) Xeriscape landscaping: preventing pollution and using resources efficiently. Report EPA-840-B-93-001

    Google Scholar 

  • Environmental Protection Agency (EPA) (2002) Water-efficient landscaping: preventing pollution and using resources wisely. Report EPA832-F-02-002

    Google Scholar 

  • Environmental Protection Agency (EPA) (2017) Water efficiency management guide: landscaping and irrigation. Report EPA 832-F-17-016b

    Google Scholar 

  • Environmental Protection Agency (EPA) (2020) WaterSense. Retrieved from www.epa.gov/watersense/outdoor

  • Escobedo FJ, Giannico V, Jim CY, Sanesi G, Lafortezza R (2019) Urban forests, ecosystem services, green infrastructure and nature-based solutions: nexus or evolving metaphors? Urban Forestry Urban Greening 37:3–12

    Article  Google Scholar 

  • European Commission, Directorate-General for Research and Innovation (2021) Evaluating the impact of nature-based solutions: a handbook for practitioners. Publications Office of the European Union. https://doi.org/10.2777/244577

  • Faeth SH, Bang C, Saari S (2011) Urban biodiversity: patterns and mechanisms. Ann N Y Acad Sci 1223(1):69–81

    Article  PubMed  Google Scholar 

  • Faivre N, Fritz M, Freitas T, de Boissezon B, Vandewoestijne S (2017) Nature-based solutions in the EU: innovating with nature to address social, economic and environmental challenges. Environ Res 159:509–518

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Jamali B, Deletic A, Zhang K (2021) Machine learning approaches for predicting the performance of stormwater biofilters in heavy metal removal and risk mitigation. Water Res 200:117273

    Article  CAS  PubMed  Google Scholar 

  • Foster J (2014) Hiding in plain view: vacancy and prospect in Paris’ Petite Ceinture. Cities 40:124–132

    Article  Google Scholar 

  • Fraisl D, Campbell J, See L, When U, Wardlaw J, Gold M, Moorthy I, Arias R, Piera J, Oliver JL, Masó J, Penker M, Fritz S (2020) Mapping citizen science contributions to the UN sustainable development goals. Sustain Sci 15:1735–1751

    Article  Google Scholar 

  • Ganzevoort W, van den Born RJG, Halffman W, Turnhout S (2017) Sharing biodiversity data: citizen scientists’ concerns and motivations. Biodivers Conserv 26:2821–2837. https://doi.org/10.1007/s10531-017-1391-z

    Article  Google Scholar 

  • Giampietro M (2019) On the circular bioeconomy and decoupling: implications for sustainable growth. Ecol Econ 162:143–156

    Article  Google Scholar 

  • Giannico V, Lafortezza R, John R, Sanesi G, Pesola L, Chen J (2016) Estimating stand volume and above-ground biomass of urban forests using LiDAR. Remote Sens 8(4):339

    Article  Google Scholar 

  • Godefroid S, Koedam N (2007) Urban plant species patterns are highly driven by density and function of built-up areas. Landsc Ecol 22(8):1227–1239

    Article  Google Scholar 

  • Gómez-Baggethun E, Gren Å, Barton DN, Langemeyer J, McPhearson T, O’Farrell P, Andersson E, Hamstead Z, Kremer P (2013) Urban ecosystem services. In: Elmqvist T (eds) Urbanisation, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht, pp 175–251. ISBN 978-94-007-7088-1 (eBook)

    Google Scholar 

  • Grabosky J, Bassuk N (2017) Design options to integrate urban tree root zones and pavement support within a shared soil volume. In: Ferrini F, Konijnendiijk van den Bosch CC, Fini A (eds) Routledge Handbook of Urban Forestry. ISBN: 978-1-138-64728-2

    Google Scholar 

  • Hansen R, Pauleit S (2014) From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas. Ambio 43:516–529. https://doi.org/10.1007/s13280-014-0510-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Heigl F, Kieslinger B, Paul KT, Uhlik J, Dörler D (2019) Toward an international definition of citizen science. Proc Natl Acad Sci USA 116(17):8089–8092. https://doi.org/10.1073/pnas.1903393116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heynen N, Perkins HA, Roy P (2006) The political ecology of uneven urban green space: the impact of political economy on race and ethnicity in producing environmental inequality in Milwaukee. Urban Aff Rev 42(1):3–25

    Article  Google Scholar 

  • Huld T, Bódis K, Pinedo Pascua I, Dunlop E, Taylor N, Jäger-Waldau A (2018) The rooftop potential for PV systems in the European Union to deliver the Paris Agreement. Eur Energy Innov 12

    Google Scholar 

  • IUCN (2016) Defining nature-based solutions. WCC-2016-Res-069-EN. www.iucn.org/sites/dev/files/content/documents/wcc_2016_res_069_en.pdf

  • Kattwinkel M, Biedermann R, Kleyer M (2011) Temporary conservation for urban biodiversity. Biol Conserv 144(9):2335–2343

    Article  Google Scholar 

  • Klaus VH, Kiehl K (2021) A conceptual framework for urban ecological restoration and rehabilitation. Basic Appl Ecol 52:82–94. https://doi.org/10.1016/j.baae.2021.02.010

    Article  Google Scholar 

  • Knowler D, Barbier E (2005) Importing non-native plants and the risk of invasion: are market-based instruments adequate? Ecol Econ 52(3):341–354

    Article  Google Scholar 

  • Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159(8–9):1974–1983

    Article  CAS  PubMed  Google Scholar 

  • Kowarik I (2021) Working with wilderness: a promising direction for urban green spaces. Landscape Architect Front/Views Criticism 9:92–103

    Article  Google Scholar 

  • Kuo FE, Sullivan WC (2001) Aggression and violence in the inner city: effects of environment via mental fatigue. Environ Behav 33(4):543–571

    Article  Google Scholar 

  • La Notte A, D’Amato D, Mäkinen H, Paracchini ML, Liquete C, Egoh B, Geneletti D, Crossman ND (2017) Ecosystem services classification: a systems ecology perspective of the cascade framework. Ecol Indic 74:392–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, He C, Wu J (2016) The relationship between habitat loss and fragmentation during urbanisation: an empirical evaluation from 16 world cities. PLoS One 11(4):e0154613. https://doi.org/10.1371/journal.pone.0154613

    Article  PubMed  PubMed Central  Google Scholar 

  • Loreau M (2010) From populations to ecosystems: theoretical foundations for a new ecological synthesis. Monographs in Population Biology. Princeton, Princeton University Press. www.jstor.org/stable/j.ctt7s78j

  • Macdonald E, King EG (2018) Novel ecosystems: a bridging concept for the consilience of cultural landscape conservation and ecological restoration. Landsc Urban Plan 177:148–159

    Article  Google Scholar 

  • Martellozzo F, Landry JS, Plouffe D, Seufert V, Rowhani P, Ramankutty N (2014) Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand. Environ Res Lett 9(6):064025. https://doi.org/10.1088/1748-9326/9/6/064025

    Article  Google Scholar 

  • Marziliano PA, Lafortezza R, Colangelo G, Davies C, Sanesi G (2013) Structural diversity and height growth models in urban forest plantations: a case-study in northern Italy. Urban Forestry Urban Greening 12(2):246–254

    Article  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 33–144. https://doi.org/10.1017/9781009157896.002

    Book  Google Scholar 

  • Matasov V, Belelli Marchesini L, Yaroslavtsev A, Sala G, Fareeva O, Seregin I, Castaldi S, Vasenev V, Valentini R, Io T (2020) Monitoring of urban tree ecosystem services: possibilities and challenges. Forests 11(7):775. https://doi.org/10.3390/f11070775

    Article  Google Scholar 

  • Matthews T, Lo AY, Byrne JA (2015) Reconceptualising green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc Urban Plan 138:155–163

    Article  Google Scholar 

  • Mayrand F, Clergeau P (2018) Green roofs and green walls for biodiversity conservation: a contribution to urban connectivity? Sustainability 10:985. https://doi.org/10.3390/su10040985

    Article  Google Scholar 

  • Molfino NA, Wright S, Katz I, Tarlo S, Silverman F, McClean PA, Slutsky AS, Zamel N, Szalai JP, Raizenne M (1991) Effect of low concentrations of ozone on inhaled allergen responses in asthmatic subjects. Lancet 338(8761):199–203

    Article  CAS  PubMed  Google Scholar 

  • Morgenroth J, Östberg J (2017) Measuring and monitoring urban trees and urban forests. In: Ferrini F, Konijnendiijk van den Bosch CC, Fini A (eds) Routledge handbook of urban forestry. ISBN: 978-1-138-64728-2

    Google Scholar 

  • Ossola A, Lin BB (2021) Making nature-based solutions climate-ready for the 50°C world. Environ Sci Policy 123:151–159

    Article  Google Scholar 

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36. https://doi.org/10.1890/090220

    Article  Google Scholar 

  • Perez PA, Rodriguez EN (2018) Status of local soil contamination in Europe: revision of the indicator “Progress in the management contaminated sites in Europe”. EUR 29124 EN, Publications Office of the European Union, Luxembourg, 2018. ISBN 978-92-79-80073-3 (print),978-92-79-80072-6 (pdf). https://doi.org/10.2760/093804 (online), https://doi.org/10.2760/503827 (print), JRC107508

  • Perring MP, Manning P, Hobbs RJ, Lugo AE, Ramalho CE, Standish RJ (2013) Novel urban ecosystems and ecosystem services. In: Hobbs RJ, Higgs ES, Hall C (eds) Novel ecosystems: intervening in the new ecological world order, pp 310–325. ISBN: 978-1-118-35422-3

    Google Scholar 

  • Pickett STA, Cadenasso ML (2009) Altered resources, disturbance, and heterogeneity: a framework for comparing urban and non-urban soils. Urban Ecosyst 12:23–44

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Grove JM, Boone CG, Groffman PM, Irwin EG, Kaushal S, Marshall V, McGrath BP, Nilon CH, Pouyat RV, Szlavecz K, Trot A, Warren P (2010) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92(3):331–362. https://doi.org/10.1016/j.jenvman.2010.08.022

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML, Baker ME, Band LE, Boone CG, Buckley GL, Groffman PM, Grove JG, Irwin EG, Kaushal S, LaDeau SL, Miller AJ, Nilon CH, Romolini M, Rosi MJ, Swan CM, Szlavecz K (2020) Theoretical perspectives of the Baltimore ecosystem study: conceptual evolution in a social–ecological research project. Bioscience 70(4):297–314. https://doi.org/10.1093/biosci/biz166

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichholf JH (2007) Stadtnatur – Eine neue Heimat für Tiere und Planzen. Oekom Verlag, München. ISBN: 978-3-86581-042-7

    Google Scholar 

  • Riolo F (2019) The social and environmental value of public urban food forests: the case study of the Picasso Food Forest in Parma, Italy. Urban Forestry and Urban Greening 45:126225

    Article  Google Scholar 

  • Sæbø A, Janhäll S, Gawronski SW, Hanslin HM (2017) Urban forestry and pollution mitigation. In: Ferrini F, Konijnendijk van den Bosch C, Fini A (eds) Routledge handbook of urban forestry. Taylor & Francis Group, New York. ISBN 978-1-138-64728

    Google Scholar 

  • Sanesi G, Padoa-Schioppa E, Lorusso L, Bottoni L, Lafortezza R (2009) Avian ecological diversity as an indicator of urban forest functionality: results from two case studies in northern and southern Italy. J Arboric 35(2):80

    Google Scholar 

  • Schwarz N, Moretti M, Bughalo MN, Davies ZG, Haase D, Hack J, Hof A, Melero Y, Pett TJ, Knapp S (2017) Understanding biodiversity-ecosystem service relationships in urban areas: a comprehensive literature review. Ecosyst Serv 27:161–171

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics: from air pollution to climate change. Wiley. ISBN: 978-1-118-94740-1, 1152 pp

    Google Scholar 

  • Sitzia T, Campagnaro T, Weir RG (2016) Novel woodland patches in a small historical Mediterranean city: Padova, Northern Italy. Urban Ecosyst 19(1):475–487

    Article  Google Scholar 

  • Sjöman H, Morgenroth J, Deakin Sjöman J, Sæbø A, Kowarik I (2016) Diversification of the urban forest - can we afford to exclude non-native tree species? Short communication. Urban Forestry Urban Greening 18:237–241

    Article  Google Scholar 

  • Soanes K, Sievers M, Chee YE, Williams NS, Bhardwaj M, Marshall AJ, Parris KM (2019) Correcting common misconceptions to inspire conservation action in urban environments. Conserv Biol 33(2):300–306

    Article  PubMed  Google Scholar 

  • Song Y, Kirkwood N, Maksimović C, Zheng X, O'Connor D, Jin Y, Hou D (2019) Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: a review. Sci Total Environ 663:568–579

    Article  CAS  PubMed  Google Scholar 

  • Sovocool KA, Morgan M (2005) Xeriscape conversion study. Southern Nevada Water Authority

    Google Scholar 

  • Stas M, Aerts R, Hendrickx M, Delcloo A, Dendoncker N, Dujardin S, Somers B et al (2021) Exposure to green space and pollen allergy symptom severity: a case-crossover study in Belgium. Sci Total Environ 781:146682

    Article  CAS  PubMed  Google Scholar 

  • Szlavecz K, Warren PS, Pickett STA (2011) Biodiversity in the urban landscape. In: Cincotta RP, Gorenflo LJ (eds) Human population: its influences on biological diversity, ecological studies, vol 214. Springer, Berlin, pp 75–101. https://doi.org/10.1007/978-3-642-16707-2_6

    Chapter  Google Scholar 

  • Tan Z, Lau KKL, Ng E (2016) Urban tree design approaches for mitigating daytime urban heat Island effects in a high-density urban environment. Energ Buildings 114:265–274

    Article  Google Scholar 

  • Torresan C, Garzón MB, O'Grady M, Robson TM, Picchi G, Panzacchi P, Tomelleri E, Smith M, Marshall JD, Wingate L, Tognetti R, Rustad L, Kneeshaw DD (2021) A new generation of sensors and monitoring tools to support climate-smart forestry practices. Can J For Res 51:1751. https://doi.org/10.1139/cjfr-2020-0295

    Article  Google Scholar 

  • Vailshery LS, Jaganmohan M, Nagendra H (2013) Effect of street trees on microclimate and air pollution in a tropical city. Urban Forestry Urban Greening 12(3):408–415

    Article  Google Scholar 

  • van Elsas JD, Trevors JT, Rosado AS, Nannipieri P (2019) Modern soil microbiology, 472 pp, 3rd edn. CRC Press, Taylor and Francis Group. ISBN 978-1-4987-6353-0

    Google Scholar 

  • Van Mechelen C, Dutoit T, Hermy M (2014) Mediterranean open habitat vegetation offers great potential for extensive green roof design. Landsc Urban Plan 121:81–91

    Article  Google Scholar 

  • Varela MD, Subiza J, Subiza JL, Rodriguez R, Garcia B, Jerez M, Jimenez JA, Panzani R (1997) Platanus pollen as an important cause of pollinosis. J Allergy Clin Immunol 749(100), 6, part 1

    Google Scholar 

  • Wang X, Dallimer M, Scott CE, Shi W, Gaoe J (2021) Tree species richness and diversity predicts the magnitude of urban heat Island mitigation effects of greenspaces. Sci Total Environ 770:145211

    Article  CAS  PubMed  Google Scholar 

  • Zari MP (2018) The importance of urban biodiversity – an ecosystem services approach. Int J Biodivers 2:357–360

    Article  Google Scholar 

  • Zipperer WC (2002) Species composition and structure of regenerated and remnant forest patches within an urban landscape. Urban Ecosyst 6(4):271–290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Sæbø .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sæbø, A., Hanslin, H.M., Muys, B., Shanafelt, D.W., Sitzia, T., Tognetti, R. (2023). Biodiversity and Ecosystem Functions as Pillars of BioCities. In: Scarascia-Mugnozza, G.E., Guallart, V., Salbitano, F., Ottaviani Aalmo, G., Boeri, S. (eds) Transforming Biocities. Future City, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-031-29466-2_3

Download citation

Publish with us

Policies and ethics