Skip to main content

Noninvasive Mechanical Ventilation in COPD Exacerbations

  • Chapter
  • First Online:
Noninvasive Mechanical Ventilation

Abstract

Acute and acute-on-chronic hypoxemic-hypercapnic ventilatory failure (ARF) are common, potentially lethal, complications of chronic obstructive pulmonary disease (COPD) exacerbations. Noninvasive mechanical ventilation (NIMV) is a well-established and effective tool useful either (i) to prevent overt ARF, to avoid endotracheal intubation and invasive mechanical ventilation, or (ii) as an alternative to invasive ventilation at a more advanced stage of acute respiratory failure, (iii) to prevent the occurrence of impending (but not established) acute or post-extubation failure, and (iv) to facilitate the process of weaning from mechanical ventilation, according to the severity and stage of ARF.

Why, when, where and how to deliver NIMV during COPD exacerbations are common questions that arise when the clinicians face this serious clinical challenge.

The present chapter will try to address as exhaustively as possible all of them in a sort of pocket guide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5:691–706.

    Article  Google Scholar 

  2. Mathers C, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006:e442.

    Google Scholar 

  3. Regueiro CR, Hamel MB, Davis RB, et al. Comparison of generalist and pulmonologist care for patients hospitalized with severe chronic obstructive pulmonary disease: resource intensity, hospital costs, and survival. Support investigators. Study to understand prognoses and preferences for outcomes and risks of treatment. Am J Med. 1998;10:366–72.

    Article  Google Scholar 

  4. Gibson PG, Wlodarczyk JH, Wilson AJ, Sprogis A. Severe exacerbation of chronic obstructive airways disease: health resource use in general practice and hospital. J Qual Clin Pract. 1998;18:125–33.

    CAS  PubMed  Google Scholar 

  5. Pauwels RA, Buist AS, Calverley PMA, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO global initiative for chronic obstructive lung disease (GOLD). Workshop summary. Am J Respir Crit Care Med. 2001;163:1256–76.

    Article  CAS  PubMed  Google Scholar 

  6. Fabbri LM, Luppi F, Beghè B, et al. Complex chronic comorbidities of COPD. Eur Respir J. 2008;31:204–12.

    Article  CAS  PubMed  Google Scholar 

  7. Squadrone F, Frigerio P, Fogliati C, et al. Non-invasive versus invasive ventilation in COPD patients with severe acute respiratory failure deemed to require ventilatory assistance. Intensive Care Med. 2004;30:1303–10.

    Article  PubMed  Google Scholar 

  8. Colice GL. Historical perspective on the development of mechanical ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 1st ed. New York: McGraw-Hill Inc.; 1994. p. 1–35.

    Google Scholar 

  9. Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:786–97.

    Article  CAS  PubMed  Google Scholar 

  10. Rodarte JR, Rehder K. Dynamics of respiration. In: Fishman AP, editor. Handbook of physiology, section 3: respiratory system, Vol. III. Mechanics of Breathing, Part I. Baltimore, MD: The Williams and Wilkins Co.; 1986. p. 131–44.

    Google Scholar 

  11. Goldstone JC, Green M, Moxham J. Maximum relaxation rate of the diaphragm during weaning from mechanical ventilation. Thorax. 1994;49:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Appendini L, Purro A, Patessio A, et al. Partitioning of inspiratory muscle workload and pressure assistance in ventilator-dependent COPD patients. Am J Respir Crit Care Med. 1996;154:1301–9.

    Article  CAS  PubMed  Google Scholar 

  13. Purro A, Appendini L, De Gaetano A, et al. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161:1115–23.

    Article  CAS  PubMed  Google Scholar 

  14. Zakynthinos SG, Vassilakopoulos T, Roussos C. The load of inspiratory muscles in patients needing mechanical ventilation. Am J Respir Crit Care Med. 1995;152:1248–55.

    Article  CAS  PubMed  Google Scholar 

  15. Coussa ML, Guérin C, Eissa NT, et al. Partitioning of work of breathing in mechanically ventilated COPD patients. J Appl Physiol. 1993;75:1711–9.

    Article  CAS  PubMed  Google Scholar 

  16. De Troyer A, Pride NB. The chest wall and respiratory muscles in chronic obstructive pulmonary disease. In: Roussos C, editor. The thorax, part C: disease. New York: Marcel Dekker, Inc; 1995. p. 1975–2006.

    Google Scholar 

  17. Macklem PT. Hyperinflation. Am Rev Respir Dis. 1984;129:1–2.

    CAS  PubMed  Google Scholar 

  18. Tobin MJ. Respiratory muscles in disease. Clin Chest Med. 1988;9:63–286.

    Article  Google Scholar 

  19. Keens TG, Bryan AC, Levison H, Iannuzzo CD. Developmental pattern of muscle fiber types in human ventilatory muscles. J Appl Physiol. 1978;4:909–13.

    Article  Google Scholar 

  20. Farkas GA, Roussos C. Adaptability of the hamster diaphragm to exercise and/or emphysema. J Appl Physiol. 1982;53:1263–72.

    Article  CAS  PubMed  Google Scholar 

  21. Similowski T, Yan S, Gauthier AP, Macklem PT, Bellemare F. Contractile properties of the human diaphragm during chronic hyperinflation. N Engl J Med. 1991;325:917–23.

    Article  CAS  PubMed  Google Scholar 

  22. Arora NS, Rochester DF. Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am Rev Respir Dis. 1982;126:5–8.

    CAS  PubMed  Google Scholar 

  23. Aubier M, Murciano D, Lecocguic Y, et al. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313:420–4.

    Article  CAS  PubMed  Google Scholar 

  24. Decramer M, Lacquet LM, Fagard R, et al. Corticosteroids contribute to muscle weakness in chronic airflow obstruction. Am J Respir Crit Care Med. 1994;150:11–6.

    Article  CAS  PubMed  Google Scholar 

  25. Appendini L, Purro A, Gudjonsdottir M, et al. Physiologic response of ventilator-dependent patients with chronic obstructive pulmonary disease to proportional assist ventilation and continuous positive airway pressure. Am J Respir Crit Care Med. 1999;159:1510–7.

    Article  CAS  PubMed  Google Scholar 

  26. Broseghini C, Brandolese R, Poggi R, et al. Respiratory mechanics during the first day of mechanical ventilation in patients with pulmonary edema and chronic airway obstruction. Am Rev Respir Dis. 1988;138:355–61.

    Article  CAS  PubMed  Google Scholar 

  27. Field S, Grassino A, Sanci S. Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol. 1984;57:44–51.

    Article  CAS  PubMed  Google Scholar 

  28. Appendini L, Patessio A, Zanaboni S, et al. Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1994;149:1069–76.

    Article  CAS  PubMed  Google Scholar 

  29. Brochard L. Pressure support ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 1st ed. New York: McGraw-Hill, Inc.; 1994. p. 239–57.

    Google Scholar 

  30. Nava S, Ambrosino N, Rubini F, et al. Effect of nasal pressure support ventilation and external PEEP on diaphragmatic activity in patients with severe COPD stable. Chest. 1993;103:143–50.

    Article  CAS  PubMed  Google Scholar 

  31. Murciano D, Boczkowski J, Lecocguic Y, et al. Tracheal occlusion pressure: a simple index to monitor respiratory muscle fatigue during acute respiratory failure in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1988;108:800–5.

    Article  CAS  PubMed  Google Scholar 

  32. Herrera M, Blasco J, Venegas J, et al. Mouth occlusion pressure (P0.1) in acute respiratory failure. Intensive Care Med. 1985;11:134–9.

    Article  CAS  PubMed  Google Scholar 

  33. Sassoon CSH, Te TT, Mahutte CK, Light RW. Airway occlusion pressure: an important indicator for successful weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987;135:107–13.

    CAS  PubMed  Google Scholar 

  34. Fleury B, Murciano D, Talamo C, Aubier M, Pariente R, Milic-Emili J. Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis. 1985;131:822–7.

    CAS  PubMed  Google Scholar 

  35. Murciano D, Aubier M, Bussi S, et al. Comparison of esophageal, tracheal and mouth occlusion pressure in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis. 1982;126:837–41.

    CAS  PubMed  Google Scholar 

  36. Milic-Emili J. Recent advances in clinical assessment of control of breathing. Lung. 1982;160:1–17.

    Article  Google Scholar 

  37. Stroetz RW, Hubmayr RD. Tidal volume maintenance during weaning with pressure support. Am J Respir Crit Care Med. 1995;152:1034–40.

    Article  CAS  PubMed  Google Scholar 

  38. Iotti GA, Braschi A, Brunner JX, et al. Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med. 1995;9:406–13.

    Article  Google Scholar 

  39. Lightning M, Ghezzo H, Kim WD, et al. Loss of alveolar attachments in smokers. A related morphometric of lung function impairment. Am Rev Respir Dis. 1985;132:894–900.

    Google Scholar 

  40. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364:709–21.

    Article  PubMed  Google Scholar 

  41. Barbera JA, Roca J, Ferrer A, et al. Mechanisms of worsening gas exchange during acute exacerbations of chronic obstructive pulmonary disease. Eur Respir J. 1997;10:1285–91.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez-Roisin R, Wagner PD. Clinical relevance of ventilation-perfusion inequality determined by inert gas elimination. Eur Respir J. 1990;3:469–82.

    Article  CAS  PubMed  Google Scholar 

  43. Tobin MJ, Perez W, Guenter SM, et al. The pattern of breathing during successful and unsuccessful trials of weaning from mechanical ventilation. Am Rev Respir Dis. 1986;134:1111–8.

    CAS  PubMed  Google Scholar 

  44. Rodriguez-Roisin R. Effect of mechanical ventilation on gas exchange. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw-Hill, Inc; 1994. p. 673–93.

    Google Scholar 

  45. Brochard L, Isabey D, Piquet J, et al. Reversal of acute exacerbations of chronic obstructive pulmonary disease by inspiratory assistance with a face mask. N Engl J Med. 1990;323:1523–30.

    Article  CAS  PubMed  Google Scholar 

  46. Meduri GU. Noninvasive positive-pressure ventilation in patients with acute respiratory failure. Clin Chest Med. 1996;17:513–53.

    Article  CAS  PubMed  Google Scholar 

  47. Diaz O, Iglesia R, Ferrer M, et al. Effects of noninvasive ventilation on pulmonary gas exchange and hemodynamics during acute hypercapnic exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;156:1840–5.

    Article  CAS  PubMed  Google Scholar 

  48. Stoller GK. Acute exacerbations of COPD. N Engl J Med. 2002;346:988–94.

    Article  PubMed  Google Scholar 

  49. Schmidt GA, Hall JB. Acute on chronic failure respiratory. Assessment and management of patients with COPD in the emergency setting. JAMA. 1989;261:3444–53.

    Article  CAS  PubMed  Google Scholar 

  50. Siafakas NM, Vermeire P, Pride NB, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). The European Respiratory Society task force. Eur Respir J. 1995;8:1398–420.

    Article  CAS  PubMed  Google Scholar 

  51. Nava S, Navalesi P, Conti G. Time of noninvasive ventilation. Intensive Care Med. 2006;32:361–70.

    Article  PubMed  Google Scholar 

  52. Barbe F, Togores B, Rubi M, et al. Noninvasive ventilatory support does not facilitate recovery from acute respiratory failure in chronic obstructive pulmonary disease. Eur Respir J. 1996;9:1240–5.

    Article  CAS  PubMed  Google Scholar 

  53. Keenan SP, Powers CE, McCormack DG. Noninvasive positive-pressure ventilation in patients with milder chronic obstructive pulmonary disease exacerbations: a randomized controlled trial. Respir Care. 2005;50:610–6.

    PubMed  Google Scholar 

  54. Plant PK, Owen JL, Elliott MW. Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomized controlled trial. Lancet. 2000;355:1931–5.

    Article  CAS  PubMed  Google Scholar 

  55. Conti G, Antonelli M, Navalesi P, et al. Noninvasive versus conventional mechanical ventilation in patients with chronic obstructive pulmonary disease after failure of medical treatment in the ward: a randomised trial. Intensive Care Med. 2002;28:1701–7.

    Article  CAS  PubMed  Google Scholar 

  56. Brochard L, Mancebo J, Wysochi M, et al. Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 1995;333:817–22.

    Article  CAS  PubMed  Google Scholar 

  57. Ambrosino N, Vagheggini G. Noninvasive positive pressure ventilation in the acute care setting. Where are we? Eur Respir J. 2008;31:874–86.

    Article  CAS  PubMed  Google Scholar 

  58. Fowler RA, Guest CB, Lapinsky SE, et al. Transmission of severe acute respiratory syndrome during intubation and mechanical ventilation. Am J Respir Crit Care Med. 2004;169:1198–202.

    Article  PubMed  Google Scholar 

  59. Cheung TMT, Lau CWA, Poon E, et al. Effectiveness of noninvasive positive pressure ventilation in the treatment of acute respiratory failure in severe acute respiratory syndrome. Chest. 2004;126:845–50.

    Article  PubMed  Google Scholar 

  60. Nava S, Gregoretti C, Fanfulla F, a. Noninvasive ventilation to prevent respiratory failure after extubation in high risk patients. Crit Care Med. 2005;33:2465–70.

    Article  PubMed  Google Scholar 

  61. Ferrer M, Valencia M, Nicolas JM, et al. Early non-invasive ventilation averts extubation failure in patients at risk. A randomized trial. Am J Respir Crit Care Med. 2006;173(2):164–70.

    Article  PubMed  Google Scholar 

  62. Elliott MW. Non-invasive ventilation in acute exacerbations of chronic obstructive pulmonary disease: a new gold standard? Intensive Care Med. 2002;28:1691–4.

    Article  CAS  PubMed  Google Scholar 

  63. Corrado A, Gorini M, Villella G, et al. Negative pressure ventilation in the treatment of acute respiratory failure: an old non-invasive technique reconsidered. Eur Respir J. 1996;9:1531–44.

    Article  CAS  PubMed  Google Scholar 

  64. Conrad A, Confalonieri M, Marquis S, et al. Iron lung versus mask ventilation in the treatment of acute on chronic respiratory failure in COPD patients: a multi center study. Chest. 2002;121:189–95.

    Article  Google Scholar 

  65. Corrado A, Ginanni R, Villella G, et al. Iron lung versus conventional mechanical ventilation in acute exacerbation of COPD. Eur Respir J. 2004;23:419–24.

    Article  CAS  PubMed  Google Scholar 

  66. Guideline BTS. Non-invasive ventilation in acute respiratory failure. British Thoracic Society standards of care committee. Thorax. 2002;57:192–211.

    Article  Google Scholar 

  67. International Consensus Conference in intensive care medicine. Non-invasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 2001;163:283–91.

    Google Scholar 

  68. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med. 2017;195:557–82.

    Article  CAS  PubMed  Google Scholar 

  69. Keenan SP, Kernerman PD, Cook DJ, et al. Effect of noninvasive positive pressure ventilation on mortality in patients admitted with acute respiratory failure: a meta-analysis. Crit Care Med. 1997;25:1685–92.

    Article  CAS  PubMed  Google Scholar 

  70. Peter JV, Moran JL, Phillips-Hughes J, et al. Noninvasive ventilation in acute respiratory failure – a meta-analysis update. Crit Care Med. 2002;30:555–62.

    Article  PubMed  Google Scholar 

  71. Keenan SP, Sinuff T, Cook DJ, et al. Which patients with acute exacerbation of chronic obstructive pulmonary disease benefit from non-invasive positive-pressure ventilation? A systematic review of the literature. Ann Intern Med. 2003;138:861–70.

    Article  PubMed  Google Scholar 

  72. Lightowler JV, Wedzicha JA, Elliott MW, et al. Non-invasive positive pressure ventilation to treat respiratory failure resulting from exacerbations of chronic obstructive pulmonary disease: chocrane systematic review and meta-analysis. BMJ. 2003;326:185–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Carlucci A, Richard J-C, Wysocki M, et al. Noninvasive versus conventional mechanical ventilation: an epidemiological survey. Am J Respir Crit Care Med. 2001;163:874–80.

    Article  CAS  PubMed  Google Scholar 

  74. Girou E, Schortgen F, Delclaux C, et al. Association of non-invasive ventilation with nosocomial infections and survival in critically ill patients. JAMA. 2000;284:2361–7.

    Article  CAS  PubMed  Google Scholar 

  75. Guerin C, Girard R, Chemorin C, et al. Facial mask non-invasive mechanical ventilation reduces the incidence of nosocomial pneumonia. A prospective epidemiological survey from a single ICU. Intensive Care Med. 1997;23:1024–32.

    Article  CAS  PubMed  Google Scholar 

  76. Nourdine K, Combes P, Carton M-J, Beuret P, et al. Does non-invasive ventilation reduce the ICU nosocomial infection risk? A prospective clinical survey. Intensive Care Med. 1999;25:567–73.

    Article  CAS  PubMed  Google Scholar 

  77. Stauffer JL. Complications of translaryngeal intubation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. New York: McGraw-Hill, Inc.; 1994. p. 711–47.

    Google Scholar 

  78. Wood KA, Lewis L, Von Harz B, et al. The use of non-invasive positive pressure ventilation in the emergency department. Chest. 1998;113:1339–46.

    Article  CAS  PubMed  Google Scholar 

  79. Bott J, Carroll TH. Randomized controlled trial of nasal ventilation in acute ventilatory failure due to chronic obstructivand airways disease. Lancet. 1993;341:1555–7.

    Article  CAS  PubMed  Google Scholar 

  80. Kramer N, Meyer TJ, Meharg J, et al. Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med. 1995;151:1799–806.

    Article  CAS  PubMed  Google Scholar 

  81. Celikel T, Sungur M, Ceyhan B, et al. Comparison of non-invasive positive ventilation with standard medical therapy in hypercapnic acute respiratory failure. Chest. 1998;114:1636–42.

    Article  CAS  PubMed  Google Scholar 

  82. Meduri GU, Abou-Shala N, Fox RC, et al. Non-invasive face mask ventilation in patients with acute hypercapnic respiratory failure. Chest. 1991;100:445–54.

    Article  CAS  PubMed  Google Scholar 

  83. Moretti M, Cilione C, Tampieri A, Fracchia C, Marchioni A, Nava S. Incidence and causes of non-invasive mechanical ventilation failure after initial success. Thorax. 2000;55:819–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Confalonieri M, Garuti G, Cattaruzza MS, et al. A chart of failure risk for non-invasive ventilation in patients with COPD exacerbation. Eur Respir J. 2005;25:348–55.

    Article  CAS  PubMed  Google Scholar 

  85. Khirani S, Georgopoulos D, Rossi A, et al. Ventilator support in chronic obstructive pulmonary disease: invasive and non-invasive. Eur Respir Monogr. 2006;38:401–29.

    Google Scholar 

  86. Georgopoulos D, Brochard L. Ventilatory strategies in acute exacerbations of chronic obstructive pulmonary disease. In: Roussos C, editor. Mechanical ventilation from intensive care and to home care, Eur Respir Monograph, vol. 8; 1998. p. 12–44.

    Google Scholar 

  87. Gilles H, Navalesi P, Girault P. Is sedation safe and beneficial in patients receiving NIV? Yes Intensive Care Med. 2015;41:1688–91.

    Article  Google Scholar 

  88. Ambrosino N, Simonds AK. Mechanical ventilation. In: Muir J-F, Ambrosino N, Simonds AK, editors. Pulmonary rehabilitation, Eur Respir Monograph, vol. 13; 2000. p. 155–76.

    Google Scholar 

  89. Powers SK, Shaneley RA, Coombes JS, et al. Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol. 2002;92:1851–8.

    Article  PubMed  Google Scholar 

  90. Sassoon CSH, Caiozzo VJ, Manka A, et al. Altered diaphragm contractile properties with controlled mechanical ventilation. J Appl Physiol. 2002;92:2585–95.

    Article  PubMed  Google Scholar 

  91. Laghi F, D'Alfonso N, Tobin MJ. Pattern of recovery from diaphragmatic fatigue over 24 hours. J Appl Physiol. 1995;79:539–46.

    Article  CAS  PubMed  Google Scholar 

  92. Brochard L. Noninvasive pressure support ventilation: physiological and clinical results in patients with COPD and acute respiratory failure. Monaldi Arch Chest Dis. 1997;52:64–7.

    CAS  PubMed  Google Scholar 

  93. Girault C, Richard JC, Chevron V, et al. Comparative physiologic effects of noninvasive assist-control and pressure support in ventilation acute hypercapnic respiratory failure. Chest. 1997;111:1639–48.

    Article  CAS  PubMed  Google Scholar 

  94. Vitacca M, Lanini B, Nava S, et al. Inspiratory muscle workload due to dynamic intrinsic PEEP in stable COPD patients: effects of two different settings of non-invasive pressure support ventilation. Monaldi Arch Chest Dis. 2004;61:81–5.

    Article  CAS  PubMed  Google Scholar 

  95. Vitacca M, Rubini F, Foglio K, et al. Non-invasive modalities of positive pressure ventilation improve the outcome of acute exacerbation of COLD patients. Intensive Care Med. 1993;19:450–5.

    Article  CAS  PubMed  Google Scholar 

  96. Brochard LJ, Lellouche F. Pressure-support ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 3rd ed. New York: McGraw-Hill; 2013. p. 199–226.

    Google Scholar 

  97. Alberti A, Gallo F, Fongarol A, et al. P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med. 1995;21:547–53.

    Article  CAS  PubMed  Google Scholar 

  98. Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.

    Article  PubMed  Google Scholar 

  99. Vargas F, Thille A, Lyazidi A, et al. NIV for acute respiratory failure: modes of ventilation and ventilators. In: Muir JF, Ambrosino N, Simonds AK, editors. Non-invasive ventilation, Eur Respir Monograph, vol. 41; 2008. p. 154–72.

    Google Scholar 

  100. Aslanian P, El Atrous S, Isabey D, et al. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157:135–43.

    Article  CAS  PubMed  Google Scholar 

  101. Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.

    Article  PubMed  Google Scholar 

  102. Prinianakis G, Delmastro M, Carlucci A, et al. Effect of varying the pressurization rate during non-invasive pressure support ventilation. Eur Respir J. 2004;23:314–20.

    Article  CAS  PubMed  Google Scholar 

  103. Tassaux D, Gainnier M, Battisti A, et al. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172:1283–9.

    Article  PubMed  Google Scholar 

  104. Nava S, Bruschi C, Rubini F, et al. Respiratory response and inspiratory effort during pressure support ventilation in COPD patients. Intensive Care Med. 1995;21:871–9.

    Article  CAS  PubMed  Google Scholar 

  105. Petrof BJ, Legarè M, Goldberg P, Milic-Emili J, Gottfried SB. Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1990;141:281–9.

    Article  CAS  PubMed  Google Scholar 

  106. Pepe PE, Marini JJ. Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis. 1982;126:166–70.

    CAS  PubMed  Google Scholar 

  107. Rossi A, Gottfried SB, Zocchi L, et al. Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am Rev Respir Dis. 1985;131:672–7.

    CAS  PubMed  Google Scholar 

  108. Gottfried SB, Rossi A, Higgs BD, et al. Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am Rev Respir Dis. 1985;131:414–20.

    CAS  PubMed  Google Scholar 

  109. Bernasconi M, Ploysongsang Y, Gottfried SB, Milic-Emili J, Rossi A. Respiratory compliance and resistance in mechanically ventilated patients with acute respiratory failure. Intensive Care Med. 1988;14:547–53.

    Article  CAS  PubMed  Google Scholar 

  110. Milic-Emili J, Gottfried SB, Rossi A. Dynamic hyperinflation: intrinsic PEEP and its ramifications in patients with respiratory failure. In: Vincent JL, editor. Intensive care med. Heidelberg: Springer-Verlag; 1987. p. 192–8.

    Google Scholar 

  111. Gay PC, Rodarte JR, Hubmayr RD. The effects of positive expiratory pressure on isovolume flow and dynamic hyperinflation in patients receiving mechanical ventilation. Am Rev Respir Dis. 1989;139:621–6.

    Article  CAS  PubMed  Google Scholar 

  112. Rossi A, Polese G, Brandi G, Conti G. Intrinsic positive end-expiratory pressure (PEEPi). Intensive Care Med. 1995;21:522–36.

    Article  CAS  PubMed  Google Scholar 

  113. Tobin MJ, Lodato RF. PEEP, auto-PEEP, and waterfalls. Chest. 1989;96:449–51.

    Article  CAS  PubMed  Google Scholar 

  114. Georgopoulos D, Giannouli E, Patakas D. Effect of extrinsic positive end-expiratory pressure on mechanically ventilated patients with chronic obstructive pulmonary disease and dynamic hyperinflation. Intensive Care Med. 1993;19:197–203.

    Article  CAS  PubMed  Google Scholar 

  115. Sydow M, Golisch W, Buscher H, et al. Effect of low-level PEEP on inspiratory work of breathing in intubated patients, both with healthy lungs and with COPD. Intensive Care Med. 1995;21:887–95.

    Article  CAS  PubMed  Google Scholar 

  116. Rossi A, Brandolese R, Milic-Emili J, Gottfried SB. The role of PEEP in patients with chronic obstructive pulmonary disease during assisted ventilation. Eur Respir J. 1990;32:818–22.

    Article  Google Scholar 

  117. Ranieri MV, Giuliani R, Cinnella G, et al. Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis. 1993;147:5–13.

    Article  CAS  PubMed  Google Scholar 

  118. Ninane V, Yernault JC, De Troyer A. Intrinsic PEEP in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;148:1037–42.

    Article  CAS  PubMed  Google Scholar 

  119. Lessard MR, Lofaso F, Brochard L. Expiratory muscle activity increases intrinsic positive end-expiratory pressure independently of dynamic hyperinflation in mechanically ventilated patients. Am J Respir Crit Care Med. 1995;151:562–9.

    Article  CAS  PubMed  Google Scholar 

  120. Younes M. Proportional assist ventilation (PAV). In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 1st ed. New York: McGraw-Hill; 1994. p. 349–70.

    Google Scholar 

  121. Younes M. Proportional assist ventilation, a new approach to ventilatory support. I: theory. Am Rev Respir Dis. 1992;145:114–20.

    Article  CAS  PubMed  Google Scholar 

  122. Navalesi P, Hernandez P, Wongsa A, et al. Proportional assist ventilation in acute respiratory failure: effects on breathing pattern and inspiratory effort. Am J Respir Crit Care Med. 1996;154:1330–8.

    Article  CAS  PubMed  Google Scholar 

  123. Vitacca M, Clini E, Pagani M, et al. Physiologic effects of early administered mask proportional assist ventilation in patients with chronic obstructive pulmonary disease and acute respiratory failure. Crit Care Med. 2000;28:1791–7.

    Article  CAS  PubMed  Google Scholar 

  124. Patrick W, Webster K, Ludwig L, et al. Non-invasive positive-pressure ventilation in acute respiratory distress without prior chronic respiratory failure. Am J Respir Crit Care Med. 1996;153:1005–11.

    Article  CAS  PubMed  Google Scholar 

  125. Porta R, Appendini L, Vitacca M, et al. Mask proportional assist versus pressure support ventilation in patients in clinically stable condition with chronic ventilatory failure. Chest. 2002;122:479–88.

    Article  PubMed  Google Scholar 

  126. Serra A, Polese G, Braggion C, et al. Non-invasive proportional assist and pressure support ventilation in patients with cystic fibrosis and chronic respiratory failure. Thorax. 2002;57:50–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wysocki M, Richard JC, Meshaka P. Noninvasive proportional assist ventilation compared with noninvasive pressure support ventilation in hypercapnic acute respiratory failure. Crit Care Med. 2002;30:323–9.

    Article  PubMed  Google Scholar 

  128. Kondili E, Prinianakis G, Alexopoulou C, et al. Respiratory load compensation during mechanical ventilation – proportional assist ventilation with load-adjustable gain factors versus pressure support. Intensive Care Med. 2006;32:692–9.

    Article  PubMed  Google Scholar 

  129. Xirouchaki N, Kondili E, Vaporidi K, et al. Proportional assist ventilation with load adjustable gain factors in critically ill patients: comparison with pressure support. Intensive Care Med. 2008;34:2086–34.

    Article  Google Scholar 

  130. Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5:1433–6.

    Article  CAS  PubMed  Google Scholar 

  131. Piquilloud L, Vignaux L, Bialais E, et al. Neurally adjusted ventilatory assist improve patient-ventilator interaction. Intensive Care Med. 2011;37:263–71.

    Article  PubMed  Google Scholar 

  132. Passath C, Takala J, Tuchscherer D, et al. Physiologic response to changing positive end-expiratory pressure during neurally adjusted ventilatory assist in sedated critically ill adults. Chest. 2010;138:578–87.

    Article  PubMed  Google Scholar 

  133. Brander L, Leong-Poi H, Beck J, et al. Titration and implementation of neurally adjusted ventilatory assist in critically ill patients. Chest. 2009;135:695–703.

    Article  PubMed  Google Scholar 

  134. Rozé H, Lafrikh A, Perrier V, et al. Daily titration of neurally adjusted ventilatory assist using the diaphragm electrical activity. Intensive Care Med. 2011;37:1087–94.

    Article  PubMed  Google Scholar 

  135. Soo Hoo GW, Santiago S, Williams JW. Nasal mechanical ventilation for hypercapnic respiratory failure in chronic obstructive pulmonary disease: determinants of success and failure. Crit Care Med. 1994;22:1253–61.

    Article  CAS  PubMed  Google Scholar 

  136. Gregoretti C, Confalonieri M, Navalesi P, et al. Evaluation of patient skin breakdown and comfort with a new face mask for non-invasive ventilation: a multi-center study. Intensive Care Med. 2002;28:278–84.

    Article  PubMed  Google Scholar 

  137. Beltrame F, Lucangelo U, Gregori D, et al. Non-invasive positive pressure ventilation in trauma patients with acute respiratory failure. Monadi Arch Chest Dis. 1999;54:109–14.

    CAS  Google Scholar 

  138. Patroniti N, Foti G, Manfio A, et al. Head helmet versus face mask for non-invasive continuous positive airway pressure: a physiological study. Intensive Care Med. 2003;29:1680–7.

    Article  PubMed  Google Scholar 

  139. Antonelli M, Conti G, Pelosi P, et al. New treatment of acute hypoxemic respiratory failure: noninvasive pressure support ventilation delivered by helmet—a pilot controlled trial. Crit Care Med. 2002;30:602–8.

    Article  PubMed  Google Scholar 

  140. Antonelli M, Pennisi MA, Pelosi P, et al. Noninvasive positive pressure ventilation using a helmet in patients with acute exacerbation of chronic obstructive pulmonary disease: a feasibility study. Anesthesiology. 2004;100:16–24.

    Article  PubMed  Google Scholar 

  141. Racca F, Appendini L, Gregoretti C, et al. Effectiveness of mask and helmet interfaces to deliver noninvasive ventilation in a human model of resistive breathing. J Appl Physiol. 2005;99:1262–71.

    Article  PubMed  Google Scholar 

  142. Racca F, Appendini L, Gregoretti C, et al. Helmet ventilation and carbon dioxide rebreathing: effects of adding a leak at the helmet ports. Intensive Care Med. 2008;34:1461–8.

    Article  PubMed  Google Scholar 

  143. Calderini E, Confalonieri M, Puccio PG, et al. Patient-ventilator asynchrony during noninvasive ventilation: the role of expiratory trigger. Intensive Care Med. 1999;25:662–7.

    Article  CAS  PubMed  Google Scholar 

  144. Navalesi P, Fanfulla F, Frigerio P, et al. Physiologic evaluation of noninvasive mechanical ventilation delivered with three types of maks in patients with chronic hypercapnic respiratory failure. Crit Care Med. 2000;28:1785–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Appendini, L. (2023). Noninvasive Mechanical Ventilation in COPD Exacerbations. In: Esquinas, A.M. (eds) Noninvasive Mechanical Ventilation. Springer, Cham. https://doi.org/10.1007/978-3-031-28963-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28963-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28962-0

  • Online ISBN: 978-3-031-28963-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics