Skip to main content

Abstract

Zoom ADCs combine a coarse SAR ADC with a fine delta-sigma modulator (ΔΣM) to efficiently obtain high energy efficiency and high dynamic range. This makes them well suited for use in various instrumentation and audio applications. However, zoom ADCs also have drawbacks. The use of over-ranging in their fine modulators may limit SNDR, large out-of-band interferers may cause slope overload, and the quantization noise of their coarse ADC may leak into the baseband. This chapter presents an overview of recent advances in zoom ADCs that tackle these challenges while maintaining high energy efficiency. Prototypes designed in standard 0.16 μm technology achieve SNDRs over 100 dB in bandwidths ranging from 1 to 24 kHz while consuming only hundreds of μWs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Eland, S. Karmakar, B. Gönen, V.R. Veldhoven, K. Makinwa, A 440-μW, 109.8-dB DR, 106.5-dB SNDR discrete-time zoom ADC with a 20-kHz BW. IEEE J. Solid State Circuits 56(4), 1–2 (2021)

    Article  Google Scholar 

  2. B. Gönen, S. Karmakar, V.R. Veldhoven, K. Makinwa, A continuous-time zoom ADC for low-power audio applications. IEEE Journal of Solid-State Circuits 55(4) (2020)

    Google Scholar 

  3. S. Mehrotra, E. Eland, S. Karmakar, A. Liu, B. Gönen, V.R. Veldhoven, K. Makinwa, A 590 μW, 106.6 dB SNDR, 24 kHz BW continuous-time zoom ADC with a noise-shaping 4-bit SAR ADC (ESSCIRC Conference 2022 – 48th European Solid-State Circuits Conference (ESSCIRC), Milan, 2022)

    Google Scholar 

  4. B. Gönen, F. Sebastiano, R. Quan, V.R. Veldhoven, K. Makinwa, A dynamic zoom ADC with 109-dB DR for audio applications. IEEE J. Solid-State Circuits 52(6) (2017)

    Google Scholar 

  5. Y. Chae, K. Souri, K. Makinwa, A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid-State Circuits 48(12) (2013)

    Google Scholar 

  6. S. Karmakar, B. Gönen, F. Sebastiano, V.R. Veldhoven, K. Makinwa, A 280 μW dynamic zoom ADC with 120 dB DR and 118 dB SNDR in 1 kHz BW. IEEE J. Solid-State Circuits 53(12) (2018)

    Google Scholar 

  7. S. Billa, A. Sukumaran, S. Pavan, Analysis and design of continuous-time delta–sigma converters incorporating chopping. IEEE J. Solid State Circuits 52(9), 2350–2361 (2017)

    Article  Google Scholar 

  8. M. Jang, C. Lee, Y. Chae, A 134 μW 24 kHz-BW 103.5db-dr ct ΔΣ modulator with chopped negative-R and tri-level fir DAC (IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, San Francisco, 2020)

    Google Scholar 

  9. M. Jang, C. Lee, Y. Chae, Analysis and design of low-power continuous-time delta-sigma modulator using negative-R assisted integrator. IEEE J. Solid State Circuits 54(1), 277–287 (2019)

    Article  Google Scholar 

  10. A. Sukumaran, S. Pavan, Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback. IEEE J. Solid State Circuits 49(11), 2515–2525 (2014)

    Article  Google Scholar 

  11. R. Baird, T. Fiez, Linearity enhancement of multibit ΔΣ A/D and D/A converters using data weighted averaging. IEEE Trans. Circuits Syst. I, Reg. Papers 42(12), 753–762 (1995)

    Article  Google Scholar 

  12. J. Silva, U. Moon, J. Steensgaard, G.C. Temes, Wideband lowdistortion. IET Electron. Lett 37(12), 737–738 (2001)

    Article  Google Scholar 

  13. Y.-Z. Lin, C.-Y. Lin, S.-C. Tsou, C.-H. Tsai, C.-H. Lu, 20.2 A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET (2019 IEEE International Solid-State Circuits Conference – (ISSCC), 2019)

    Google Scholar 

  14. Y. Chae, G. Han, Low voltage, low power, inverter-based switched-switched capacitor. IEEE J. Solid State Circuits 44(2), 458–472 (2009)

    Article  Google Scholar 

  15. C. Enz, G. Temes, Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  16. A. Abo, P. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid State Circuits 34(5), 599–606 (1999)

    Article  Google Scholar 

  17. K. Nguyen, R. Adams, K. Sweetland, H. Chen, A 106-dB SNR hybrid oversampling analog-to-digital converter for digital audio. IEEE J. Solid State Circuits 40(12), 2408–2415 (2005)

    Article  Google Scholar 

  18. M.S. Akter, R. Sehgal, F. Goes, K.A.A. Makinwa, K. Bult, A 66-dB SNDR pipelined split-ADC in 40-nm CMOS using a class-AB residue amplifier. IEEE J. Solid State Circuits 53(10), 2939–2950 (2018)

    Article  Google Scholar 

  19. S. Lee, W. Jo, S. Song, Y. Chae, A 300-μW audio ΔΣ modulator with 100.5-dB DR using dynamic bias inverter. IEEE Trans. Circuits Syst. I Reg. Papers 63(11), 1866–1875 (2016)

    Article  Google Scholar 

  20. H. Jiang, B. Gönen, K.A.A. Makinwa, S. Nihitanov, Chopping in continuous-time sigma-delta modulators (Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2017), pp. 1–4

    Google Scholar 

  21. S. Pan, K.A.A. Makinwa, A 10 fJ·K2 Wheatstone bridge temperature sensor with a tail-resistor-linearized OTA. IEEE J. Solid State Circuits 56(2), 501–510 (2021)

    Article  Google Scholar 

  22. P. Shettigar, S. Pavan, Design techniques for wideband single-bit continuous-time ΔΣ modulators with FIR feedback DACs. IEEE J. Solid State Circuits 47(12), 2865–2879 (2012)

    Article  Google Scholar 

  23. L. Risbo, R. Hezar, B. Kelleci, H. Kiper, M. Fares, Digital approaches to ISI-mitigation in high-resolution oversampled multi-level D/a converters. IEEE J. Solid State Circuits 46(12), 2892–2903 (2011)

    Article  Google Scholar 

  24. T. He, M. Ashburn, S. Ho, Y. Zhang, G. Temes, A 50 MHz-BW continuous-time ΔΣ ADC with dynamic error correction achieving 79.8 dB SNDR and 95.2 dB SFDR. IEEE ISSCC Dig. Tech. Papers, 230–232 (2018)

    Google Scholar 

  25. C.Y. Lee, U.-K. Moon, A 0.0375mm2 203.5μW 108.8dB DR DT single-loop DSM audio ADC using a single-ended ring-amplifier-based integrator in 180nm CMOS (2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022), pp. 412–414

    Google Scholar 

  26. C. Lo, J. Lee, Y. Lim, Y. Yoon, H. Hwang, J. Lee, M. Choi, M. Lee, S. Oh, J. Lee, A 116μ W 104.4dB-DR 100.6dB-SNDR CT Δ∑ audio ADC using tri-level current-steering DAC with gate-leakage compensated off-transistor-based bias noise filter (2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021), pp. 164–166

    Google Scholar 

  27. S. Mondal, O. Ghadami, D.A. Hall, A 139 μ W 104.8dB-DR 24kHz-BW CT ΔΣM with chopped AC-coupled OTA-stacking and FIR DACs (2021 IEEE International Solid-State Circuits Conference (ISSCC), 2021), pp. 166–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efraïm Eland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eland, E., Mehrotra, S., Karmakar, S., van Veldhoven, R., Makinwa, K.A.A. (2023). The Zoom ADC: An Evolving Architecture. In: Harpe, P., Baschirotto, A., Makinwa, K.A. (eds) Biomedical Electronics, Noise Shaping ADCs, and Frequency References. Springer, Cham. https://doi.org/10.1007/978-3-031-28912-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28912-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28911-8

  • Online ISBN: 978-3-031-28912-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics