Skip to main content

Abstract

Hematopoietic cell transplantation is a potentially lifesaving procedure for patients with hematological malignancies. However, transplant recipients face numerous challenges in the months and years after transplantation. Pulmonary function testing is a critical pretransplantation evaluation tool that can help transplant physicians understand the risk for complications after transplantation, as well as to understand what risks can be mitigated. This chapter highlights the utility of the pretransplantation pulmonary evaluation to understand and mitigate the risk of posttransplant complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gratwohl A, Baldomero H, Aljurf M, et al. Hematopoietic stem cell transplantation: a global perspective. JAMA. 2010;303(16):1617–24. https://doi.org/10.1001/jama.2010.491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldman JM, Horowitz MM. The international bone marrow transplant registry. Int J Hematol. 2002;76(Suppl 1):393–7. https://doi.org/10.1007/BF03165291.

    Article  PubMed  Google Scholar 

  3. Cheng G-S. Pulmonary function and pretransplant evaluation of the hematopoietic cell transplant candidate. Clin Chest Med. 2017;38(2):307–16. https://doi.org/10.1016/j.ccm.2016.12.014.

    Article  PubMed  Google Scholar 

  4. Soubani AO, Miller KB, Hassoun PM. Pulmonary complications of bone marrow transplantation. Chest. 1996;109(4):1066–77. https://doi.org/10.1378/chest.109.4.1066.

    Article  CAS  PubMed  Google Scholar 

  5. Haider S, Durairajan N, Soubani AO. Noninfectious pulmonary complications of haematopoietic stem cell transplantation. Eur Respir Rev. 2020;29(156):190119. https://doi.org/10.1183/16000617.0119-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Henig I, Zuckerman T. Hematopoietic stem cell transplantation-50 years of evolution and future perspectives. Rambam Maimonides Med J. 2014;5(4):e0028. https://doi.org/10.5041/RMMJ.10162.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dykewicz CA. Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients: focus on community respiratory virus infections. Biol Blood Marrow Transplant. 2001;7(Suppl):19S–22S. https://doi.org/10.1053/bbmt.2001.v7.pm11777100.

    Article  PubMed  Google Scholar 

  8. Savani BN, Montero A, Wu C, et al. Prediction and prevention of transplant-related mortality from pulmonary causes after total body irradiation and allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11(3):223–30. https://doi.org/10.1016/j.bbmt.2004.12.328.

    Article  PubMed  Google Scholar 

  9. Hutchinson J. On the capacity of the lungs, and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Med Chir Trans. 1846;29:137–252. https://doi.org/10.1177/095952874602900113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedman GD, Klatsky AL, Siegelaub AB. Lung function and risk of myocardial infarction and sudden cardiac death. N Engl J Med. 1976;294(20):1071–5. https://doi.org/10.1056/NEJM197605132942001.

    Article  CAS  PubMed  Google Scholar 

  11. Kannel WB, Hubert H, Lew EA. Vital capacity as a predictor of cardiovascular disease: the Framingham study. Am Heart J. 1983;105(2):311–5. https://doi.org/10.1016/0002-8703(83)90532-x.

    Article  CAS  PubMed  Google Scholar 

  12. Ashley F, Kannel WB, Sorlie PD, Masson R. Pulmonary function: relation to aging, cigarette habit, and mortality. Ann Intern Med. 1975;82(6):739–45. https://doi.org/10.7326/0003-4819-82-6-739.

    Article  CAS  PubMed  Google Scholar 

  13. Lange P, Nyboe J, Appleyard M, Jensen G, Schnohr P. Spirometric findings and mortality in never-smokers. J Clin Epidemiol. 1990;43(9):867–73. https://doi.org/10.1016/0895-4356(90)90070-6.

    Article  CAS  PubMed  Google Scholar 

  14. Lee HM, Le H, Lee BT, Lopez VA, Wong ND. Forced vital capacity paired with Framingham risk score for prediction of all-cause mortality. Eur Respir J. 2010;36(5):1002–6. https://doi.org/10.1183/09031936.00042410.

    Article  CAS  PubMed  Google Scholar 

  15. Evans SE, Scanlon PD. Current practice in pulmonary function testing. Mayo Clin Proc. 2003;78(6):758–63; quiz 763. https://doi.org/10.4065/78.6.758.

    Article  PubMed  Google Scholar 

  16. Burney PGJ, Hooper RL. The use of ethnically specific norms for ventilatory function in African-American and white populations. Int J Epidemiol. 2012;41(3):782–90. https://doi.org/10.1093/ije/dys011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wan ES, Balte P, Schwartz JE, et al. Association between preserved ratio impaired spirometry and clinical outcomes in US adults. JAMA. 2021;326(22):2287–98. https://doi.org/10.1001/jama.2021.20939.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cooper BG. An update on contraindications for lung function testing. Thorax. 2011;66(8):714–23. https://doi.org/10.1136/thx.2010.139881.

    Article  PubMed  Google Scholar 

  19. Graham BL, Steenbruggen I, Miller MR, et al. Standardization of spirometry 2019 update. An official American Thoracic Society and European Respiratory Society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70–88. https://doi.org/10.1164/rccm.201908-1590ST.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43. https://doi.org/10.1183/09031936.00080312.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Swanney MP, Ruppel G, Enright PL, et al. Using the lower limit of normal for the FEV1/FVC ratio reduces the misclassification of airway obstruction. Thorax. 2008;63(12):1046–51. https://doi.org/10.1136/thx.2008.098483.

    Article  CAS  PubMed  Google Scholar 

  22. Culver BH. How should the lower limit of the normal range be defined? Respir Care. 2012;57(1):135–6. https://doi.org/10.4187/respcare.01427.

    Article  Google Scholar 

  23. Hansen JE, Sun X-G, Wasserman K. Spirometric criteria for airway obstruction: use percentage of FEV1/FVC ratio below the fifth percentile, not < 70%. Chest. 2007;131(2):349–55. https://doi.org/10.1378/chest.06-1349.

    Article  PubMed  Google Scholar 

  24. Cerveri I, Corsico AG, Accordini S, et al. Underestimation of airflow obstruction among young adults using FEV1/FVC <70% as a fixed cut-off: a longitudinal evaluation of clinical and functional outcomes. Thorax. 2008;63(12):1040–5. https://doi.org/10.1136/thx.2008.095554.

    Article  CAS  PubMed  Google Scholar 

  25. Stanojevic S, Kaminsky DA, Miller M, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2021;60(1):2101499. https://doi.org/10.1183/13993003.01499-2021.

    Article  Google Scholar 

  26. Mannino DM, Sonia Buist A, Vollmer WM. Chronic obstructive pulmonary disease in the older adult: what defines abnormal lung function? Thorax. 2007;62(3):237–41. https://doi.org/10.1136/thx.2006.068379.

    Article  PubMed  Google Scholar 

  27. Bhatt SP, Sieren JC, Dransfield MT, et al. Comparison of spirometric thresholds in diagnosing smoking-related airflow obstruction. Thorax. 2014;69(5):409–14. https://doi.org/10.1136/thoraxjnl-2012-202810.

    Article  PubMed  Google Scholar 

  28. Braun L. Race correction and spirometry: why history matters. Chest. 2021;159(4):1670–5. https://doi.org/10.1016/j.chest.2020.10.046.

    Article  PubMed  Google Scholar 

  29. Baugh AD, Shiboski S, Hansel NN, et al. Reconsidering the utility of race-specific lung function prediction equations. Am J Respir Crit Care Med. 2021;205:819. https://doi.org/10.1164/rccm.202105-1246OC.

    Article  PubMed Central  Google Scholar 

  30. Bhakta NR, Kaminsky DA, Bime C, et al. Addressing race in pulmonary function testing by aligning intent and evidence with practice and perception. Chest. 2022;161(1):288–97. https://doi.org/10.1016/j.chest.2021.08.053.

    Article  PubMed  Google Scholar 

  31. Hegewald MJ, Crapo RO. Socioeconomic status and lung function. Chest. 2007;132(5):1608–14. https://doi.org/10.1378/chest.07-1405.

    Article  PubMed  Google Scholar 

  32. Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130(3):827–33. https://doi.org/10.1378/chest.130.3.827.

    Article  PubMed  Google Scholar 

  33. Tennant PWG, Gibson GJ, Parker L, Pearce MS. Childhood respiratory illness and lung function at ages 14 and 50 years: childhood respiratory illness and lung function. Chest. 2010;137(1):146–55. https://doi.org/10.1378/chest.09-0352.

    Article  Google Scholar 

  34. Rocha V, Fraga S, Moreira C, et al. Life-course socioeconomic disadvantage and lung function: a multicohort study of 70 496 individuals. Eur Respir J. 2021;57(3):2001600. https://doi.org/10.1183/13993003.01600-2020.

    Article  PubMed  Google Scholar 

  35. Moffett AT, Eneanya ND, Halpern SD, Weissman GE. The impact of race correction on the interpretation of pulmonary function testing among black patients. In: A7. A007 impact of race, ethnicity, and social determinants on individuals with lung diseases. American Thoracic Society International conference abstracts. New York: American Thoracic Society; 2021. p. A1030. https://doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A1030.

    Chapter  Google Scholar 

  36. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68. https://doi.org/10.1183/09031936.05.00035205.

    Article  CAS  PubMed  Google Scholar 

  37. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22. https://doi.org/10.1183/09031936.05.00035005.

    Article  CAS  PubMed  Google Scholar 

  38. Parimon T, Madtes DK, Au DH, Clark JG, Chien JW. Pretransplant lung function, respiratory failure, and mortality after stem cell transplantation. Am J Respir Crit Care Med. 2005;172(3):384–90. https://doi.org/10.1164/rccm.200502-212OC.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sue DY. Measurement of lung volumes in patients with obstructive lung disease. A matter of time (constants). Ann Am Thorac Soc. 2013;10(5):525–30. https://doi.org/10.1513/AnnalsATS.201307-236OC.

    Article  PubMed  Google Scholar 

  40. Cliff IJ, Evans AH, Pantin CF, Baldwin DR. Comparison of two new methods for the measurement of lung volumes with two standard methods. Thorax. 1999;54(4):329–33. https://doi.org/10.1136/thx.54.4.329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rayment JH, Sandoval RA, Roden JP, Schultz KR. Multiple breath washout testing to identify pulmonary chronic graft versus host disease in children after hematopoietic stem cell transplantation. Transpl Cell Ther. 2022;28(6):328.e1–7. https://doi.org/10.1016/j.jtct.2022.02.002.

    Article  CAS  Google Scholar 

  42. Nyilas S, Baumeler L, Tamm M, et al. Inert gas washout in bronchiolitis obliterans following hematopoietic cell transplantation. Chest. 2018;154(1):157–68. https://doi.org/10.1016/j.chest.2017.12.009.

    Article  PubMed  Google Scholar 

  43. Ramirez-Sarmiento A, Orozco-Levi M, Walter EC, Au MA, Chien JW. Influence of pretransplantation restrictive lung disease on allogeneic hematopoietic cell transplantation outcomes. Biol Blood Marrow Transplant. 2010;16(2):199–206. https://doi.org/10.1016/j.bbmt.2009.09.016.

    Article  PubMed  Google Scholar 

  44. Coates AL, Peslin R, Rodenstein D, Stocks J. Measurement of lung volumes by plethysmography. Eur Respir J. 1997;10(6):1415–27. https://doi.org/10.1183/09031936.97.10061415.

    Article  CAS  PubMed  Google Scholar 

  45. Fowler WS. Lung function studies; the respiratory dead space. Am J Physiol. 1948;154(3):405–16. https://doi.org/10.1152/ajplegacy.1948.154.3.405.

    Article  CAS  PubMed  Google Scholar 

  46. Graham BL, Brusasco V, Burgos F, et al. ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016. https://doi.org/10.1183/13993003.00016-2016.

    Article  PubMed  Google Scholar 

  47. Chien JW, Maris MB, Sandmaier BM, Maloney DG, Storb RF, Clark JG. Comparison of lung function after myeloablative and 2 Gy of total body irradiation-based regimens for hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2005;11(4):288–96. https://doi.org/10.1016/j.bbmt.2005.01.003.

    Article  PubMed  Google Scholar 

  48. Deeg HJ, Sandmaier BM. Who is fit for allogeneic transplantation? Blood. 2010;116(23):4762–70. https://doi.org/10.1182/blood-2010-07-259358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124(3):344–53. https://doi.org/10.1182/blood-2014-02-514778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wenger DS, Triplette M, Crothers K, et al. Incidence, risk factors, and outcomes of idiopathic pneumonia syndrome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26(2):413–20. https://doi.org/10.1016/j.bbmt.2019.09.034.

    Article  PubMed  Google Scholar 

  51. Fukuda T, Hackman RC, Guthrie KA, et al. Risks and outcomes of idiopathic pneumonia syndrome after nonmyeloablative and conventional conditioning regimens for allogeneic hematopoietic stem cell transplantation. Blood. 2003;102(8):2777–85. https://doi.org/10.1182/blood-2003-05-1597.

    Article  CAS  PubMed  Google Scholar 

  52. Crawford SW, Fisher L. Predictive value of pulmonary function tests before marrow transplantation. Chest. 1992;101(5):1257–64. https://doi.org/10.1378/chest.101.5.1257.

    Article  CAS  PubMed  Google Scholar 

  53. Ho VT, Weller E, Lee SJ, Alyea EP, Antin JH, Soiffer RJ. Prognostic factors for early severe pulmonary complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7(4):223–9. https://doi.org/10.1053/bbmt.2001.v7.pm11349809.

    Article  CAS  PubMed  Google Scholar 

  54. Chien JW, Martin PJ, Gooley TA, et al. Airflow obstruction after myeloablative allogeneic hematopoietic stem cell transplantation. Am J Respir Crit Care Med. 2003;168(2):208–14. https://doi.org/10.1164/rccm.200212-1468OC.

    Article  PubMed  Google Scholar 

  55. Goldberg SL, Klumpp TR, Magdalinski AJ, Mangan KF. Value of the pretransplant evaluation in predicting toxic day-100 mortality among blood stem-cell and bone marrow transplant recipients. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16(12):3796–802. https://doi.org/10.1200/JCO.1998.16.12.3796.

    Article  CAS  Google Scholar 

  56. Parimon T, Au DH, Martin PJ, Chien JW. A risk score for mortality after allogeneic hematopoietic cell transplantation. Ann Intern Med. 2006;144(6):407–14. https://doi.org/10.7326/0003-4819-144-6-200603210-00007.

    Article  PubMed  Google Scholar 

  57. Au BKC, Gooley TA, Armand P, et al. Reevaluation of the pretransplant assessment of mortality score after allogeneic hematopoietic transplantation. Biol Blood Marrow Transplant. 2015;21(5):848–54. https://doi.org/10.1016/j.bbmt.2015.01.011.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Clark JG, Schwartz DA, Flournoy N, Sullivan KM, Crawford SW, Thomas ED. Risk factors for airflow obstruction in recipients of bone marrow transplants. Ann Intern Med. 1987;107(5):648–56. https://doi.org/10.7326/0003-4819-107-5-648.

    Article  CAS  PubMed  Google Scholar 

  59. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. the 2014 diagnosis and staging working group report. Biol Blood Marrow Transplant. 2015;21(3):389–401.e1. https://doi.org/10.1016/j.bbmt.2014.12.001.

    Article  PubMed  Google Scholar 

  60. Abedin S, Yanik GA, Braun T, et al. Predictive value of bronchiolitis obliterans syndrome stage 0p in chronic graft-versus-host disease of the lung. Biol Blood Marrow Transplant. 2015;21(6):1127–31. https://doi.org/10.1016/j.bbmt.2015.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Finlen Copeland CA, Snyder LD, Zaas DW, Turbyfill WJ, Davis WA, Palmer SM. Survival after bronchiolitis obliterans syndrome among bilateral lung transplant recipients. Am J Respir Crit Care Med. 2010;182(6):784–9. https://doi.org/10.1164/rccm.201002-0211OC.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jamani K, He Q, Liu Y, et al. Early post-transplantation spirometry is associated with the development of bronchiolitis obliterans syndrome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26(5):943–8. https://doi.org/10.1016/j.bbmt.2019.12.002.

    Article  PubMed  Google Scholar 

  63. Matute-Bello G, McDonald GD, Hinds MS, Schoch HG, Crawford SW. Association of pulmonary function testing abnormalities and severe veno-occlusive disease of the liver after marrow transplantation. Bone Marrow Transplant. 1998;21(11):1125–30. https://doi.org/10.1038/sj.bmt.1701225.

    Article  CAS  PubMed  Google Scholar 

  64. Krings JG, Goss CW, Lew D, et al. Quantitative CT metrics are associated with longitudinal lung function decline and future asthma exacerbations: results from SARP-3. J Allergy Clin Immunol. 2021;148(3):752–62. https://doi.org/10.1016/j.jaci.2021.01.029.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Witt CA, Sheshadri A, Carlstrom L, et al. Longitudinal changes in airway remodeling and air trapping in severe asthma. Acad Radiol. 2014;21(8):986–93. https://doi.org/10.1016/j.acra.2014.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jacob J, Bartholmai BJ, Rajagopalan S, et al. Predicting outcomes in idiopathic pulmonary fibrosis using automated computed tomographic analysis. Am J Respir Crit Care Med. 2018;198(6):767–76. https://doi.org/10.1164/rccm.201711-2174OC.

    Article  PubMed  PubMed Central  Google Scholar 

  67. El Boghdadly Z, Oran B, Jiang Y, Rondon G, Champlin R, Kontoyiannis DP. Pretransplant chest computed tomography screening in asymptomatic patients with leukemia and myelodysplastic syndrome. Bone Marrow Transplant. 2017;52(3):476–9. https://doi.org/10.1038/bmt.2016.309.

    Article  CAS  PubMed  Google Scholar 

  68. José RJ, Hall J, Brown JS. De novo bronchiectasis in haematological malignancies: patient characteristics, risk factors and survival. ERJ Open Res. 2019;5(4):00166. https://doi.org/10.1183/23120541.00166-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Walkup LL, Myers K, El-Bietar J, et al. Xenon-129 MRI detects ventilation deficits in paediatric stem cell transplant patients unable to perform spirometry. Eur Respir J. 2019;53(5):1801779. https://doi.org/10.1183/13993003.01779-2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cheng G-S, Selwa KE, Hatt C, et al. Multicenter evaluation of parametric response mapping as an indicator of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Am J Transplant. 2020;20(8):2198–205. https://doi.org/10.1111/ajt.15814.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Galbán CJ, Boes JL, Bule M, et al. Parametric response mapping as an indicator of bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(10):1592–8. https://doi.org/10.1016/j.bbmt.2014.06.014.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wood WA, Deal AM, Reeve BB, et al. Cardiopulmonary fitness in patients undergoing hematopoietic SCT: a pilot study. Bone Marrow Transplant. 2013;48(10):1342–9. https://doi.org/10.1038/bmt.2013.58.

    Article  CAS  PubMed  Google Scholar 

  73. Kelsey CR, Scott JM, Lane A, et al. Cardiopulmonary exercise testing prior to myeloablative Allo-SCT: a feasibility study. Bone Marrow Transplant. 2014;49(10):1330–6. https://doi.org/10.1038/bmt.2014.159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. ATS Committee. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111–7. https://doi.org/10.1164/ajrccm.166.1.at1102.

    Article  Google Scholar 

  75. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–46. https://doi.org/10.1183/09031936.00150314.

    Article  PubMed  Google Scholar 

  76. Sánchez-Martínez MP, Bernabeu-Mora R, Martínez-González M, Gacto-Sánchez M, Martín San Agustín R, Medina-Mirapeix F. Stability and predictors of poor 6-min walking test performance over 2 years in patients with COPD. J Clin Med. 2020;9(4):1155. https://doi.org/10.3390/jcm9041155.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Older PO, Levett DZH. Cardiopulmonary exercise testing and surgery. Ann Am Thorac Soc. 2017;14(Supplement_1):S74–83. https://doi.org/10.1513/AnnalsATS.201610-780FR.

    Article  PubMed  Google Scholar 

  78. Wilson RW, Jacobsen PB, Fields KK. Pilot study of a home-based aerobic exercise program for sedentary cancer survivors treated with hematopoietic stem cell transplantation. Bone Marrow Transplant. 2005;35(7):721–7. https://doi.org/10.1038/sj.bmt.1704815.

    Article  CAS  PubMed  Google Scholar 

  79. Jarden M, Baadsgaard MT, Hovgaard DJ, Boesen E, Adamsen L. A randomized trial on the effect of a multimodal intervention on physical capacity, functional performance and quality of life in adult patients undergoing allogeneic SCT. Bone Marrow Transplant. 2009;43(9):725–37. https://doi.org/10.1038/bmt.2009.27.

    Article  CAS  PubMed  Google Scholar 

  80. DeFor TE, Burns LJ, Gold E-MA, Weisdorf DJ. A randomized trial of the effect of a walking regimen on the functional status of 100 adult allogeneic donor hematopoietic cell transplant patients. Biol Blood Marrow Transplant. 2007;13(8):948–55. https://doi.org/10.1016/j.bbmt.2007.04.008.

    Article  PubMed  Google Scholar 

  81. Dimeo F, Fetscher S, Lange W, Mertelsmann R, Keul J. Effects of aerobic exercise on the physical performance and incidence of treatment-related complications after high-dose chemotherapy. Blood. 1997;90(9):3390–4.

    Article  CAS  PubMed  Google Scholar 

  82. Jones LW, Devlin SM, Maloy MA, et al. Prognostic importance of pretransplant functional capacity after allogeneic hematopoietic cell transplantation. Oncologist. 2015;20(11):1290–7. https://doi.org/10.1634/theoncologist.2015-0200.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nakamae M, Yamashita M, Koh H, et al. Lung function score including a parameter of small airway disease as a highly predictive indicator of survival after allogeneic hematopoietic cell transplantation. Transpl Int. 2016;29(6):707–14. https://doi.org/10.1111/tri.12779.

    Article  PubMed  Google Scholar 

  84. Ghalie R, Szidon JP, Thompson L, Nawas YN, Dolce A, Kaizer H. Evaluation of pulmonary complications after bone marrow transplantation: the role of pretransplant pulmonary function tests. Bone Marrow Transplant. 1992;10(4):359–65.

    CAS  PubMed  Google Scholar 

  85. Piñana JL, Martino R, Barba P, et al. Pulmonary function testing prior to reduced intensity conditioning allogeneic stem cell transplantation in an unselected patient cohort predicts posttransplantation pulmonary complications and outcome. Am J Hematol. 2012;87(1):9–14. https://doi.org/10.1002/ajh.22183.

    Article  PubMed  Google Scholar 

  86. Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20. https://doi.org/10.1182/blood-2011-06-365049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Popplewell LL, Forman SJ. Is there an upper age limit for bone marrow transplantation? Bone Marrow Transplant. 2002;29(4):277–84. https://doi.org/10.1038/sj.bmt.1703382.

    Article  CAS  PubMed  Google Scholar 

  88. Rutting S, Badal T, Wallis R, et al. Long-term variability of oscillatory impedance in stable obstructive airways disease. Eur Respir J. 2021;58(1):2004318. https://doi.org/10.1183/13993003.04318-2020.

    Article  PubMed  Google Scholar 

  89. Sanchis J, Gich I, Pedersen S. Systematic review of errors in inhaler use: has patient technique improved over time? Chest. 2016;150(2):394–406. https://doi.org/10.1016/j.chest.2016.03.041.

    Article  PubMed  Google Scholar 

  90. O’Callaghan C, Lynch J, Cant M, Robertson C. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug. Thorax. 1993;48(6):603–6. https://doi.org/10.1136/thx.48.6.603.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tran BT, Halperin A, Chien JW. Cigarette smoking and outcomes after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(7):1004–11. https://doi.org/10.1016/j.bbmt.2010.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hanajiri R, Kakihana K, Kobayashi T, Doki N, Sakamaki H, Ohashi K. Tobacco smoking is associated with infectious pulmonary complications after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2015;50(8):1141–3. https://doi.org/10.1038/bmt.2015.116.

    Article  CAS  PubMed  Google Scholar 

  93. Scheidl S, Zinke-Cerwenka W, Flick H, et al. Whole-body lung function test-derived outcome predictors in allogenic stem cell transplantation. Biol Blood Marrow Transplant. 2019;25(1):129–36. https://doi.org/10.1016/j.bbmt.2018.07.036.

    Article  PubMed  Google Scholar 

  94. Feldman C, Anderson R. Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect. 2013;67(3):169–84. https://doi.org/10.1016/j.jinf.2013.05.004.

    Article  PubMed  Google Scholar 

  95. Jose RJ, Dickey BF, Brown JS. Infectious respiratory disease in non-HIV immunocompromised patients. Br J Hosp Med (Lond). 2014;75(12):685–90. https://doi.org/10.12968/hmed.2014.75.12.685.

    Article  PubMed  Google Scholar 

  96. Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary immunodeficiency in hematological malignancies: focus on multiple myeloma and chronic lymphocytic leukemia. Front Immunol. 2021;12:738915. https://doi.org/10.3389/fimmu.2021.738915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Foster JH, Cheng WS, Nguyen N-Y, Krance R, Martinez C. Immunoglobulin prophylaxis in pediatric hematopoietic stem cell transplant. Pediatr Blood Cancer. 2018;65(12):e27348. https://doi.org/10.1002/pbc.27348.

    Article  CAS  PubMed  Google Scholar 

  98. José RJ, Brown JS. Bronchiectasis. Br J Hosp Med (Lond). 2014;75(Suppl 10):C146–51. https://doi.org/10.12968/hmed.2014.75.Sup10.C146.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Sheshadri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alkhunaizi, M., José, R., Sheshadri, A. (2023). Pretransplant Pulmonary Evaluation. In: Soubani, A.O. (eds) Pulmonary and Critical Care Considerations of Hematopoietic Stem Cell Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-031-28797-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28797-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28796-1

  • Online ISBN: 978-3-031-28797-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics