Skip to main content

Role of Polyphenols in Cardiovascular Diseases

  • Chapter
  • First Online:
Bioprospecting of Tropical Medicinal Plants

Abstract

The health advantages of polyphenols have been well documented in recent years, with particular focus on their protective effects against cardiovascular disease, the world’s leading cause of death today. Additionally, polyphenols can improve lipid profiles and slow down the oxidation of low-density lipoproteins (LDLs). Anti-inflammatory and apoptotic activities in the vascular endothelium may be modulated by these compounds. Many of these effects have been attributed to polyphenols’ antioxidant qualities, but this theory has not been widely accepted, and a slew of other mechanisms have been proposed to explain their health benefits. Polyphenols have been connected to a variety of signaling pathways. Polyphenols have been shown in recent research to reduce the risk of cardiovascular disease, and this study examines the methods by which they do so.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2:270–278

    Article  Google Scholar 

  2. Ganesan K, Xu B (2017) A critical review on polyphenols and health benefits of black soybeans. Nutrients 9:455

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cory H, Passarelli S, Szeto J, Tamez M, Mattei J (2018) The role of polyphenols in human health and food systems: a mini-review. Front Nutr 5:87

    Article  PubMed  PubMed Central  Google Scholar 

  4. Edmands WMB, Ferrari P, Rothwell JA, Rinaldi S, Slimani N, Barupal DK, Biessy C, Jenab M, Clavel-Chapelon F, Fagherazzi G et al (2015) Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am J Clin Nutr 102. https://doi.org/10.3945/ajcn.114.101881

  5. Gardener H, Caunca MR (2018) Mediterranean diet in preventing neurodegenerative diseases. Curr Nutr Rep 7:10–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. ICW A, PCH H (2005) Polyphenols and disease risk in epidemiologic studies… Proceedings of the 1st international conference on polyphenols and health held in Vichy, France, November 18–21, 2004. Am J Clin Nutr 81:317S–325S

    Google Scholar 

  7. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, de la Torre R, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F et al (2014) Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutr Metab Cardiovasc Dis 24. https://doi.org/10.1016/j.numecd.2013.12.014

  8. Vita JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81:292S–297S

    Article  CAS  PubMed  Google Scholar 

  9. Yamagata K (2019) Polyphenols regulate endothelial functions and reduce the risk of cardiovascular disease. Curr Pharm Des 25. https://doi.org/10.2174/1381612825666190722100504

  10. Arts ICW, Hollman PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81:317S–325S

    Article  CAS  PubMed  Google Scholar 

  11. Kocic B, Kitic D, Brankovic S (2013) Dietary flavonoid intake and colorectal cancer risk: evidence from human population studies. J BUON 18:34

    CAS  PubMed  Google Scholar 

  12. Hollman PCH, Katan MB (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51. https://doi.org/10.1016/S0753-3322(97)88045-6

  13. Khan J, Deb PK, Priya S, Medina KD, Devi R, Walode SG, Rudrapal M (2021) Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 26:4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Graf BA, Milbury PE, Blumberg JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8:281–290

    Article  CAS  PubMed  Google Scholar 

  15. Beckman CH (2000) Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiol Mol Plant Pathol 57. https://doi.org/10.1006/pmpp.2000.0287

  16. Spencer JPE, Abd El Mohsen MM, Minihane AM, Mathers JC (2008) Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br J Nutr 99:12–22

    Article  CAS  PubMed  Google Scholar 

  17. Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ (2019) Naturally lignan-rich foods: a dietary tool for health promotion? Molecules 24:917

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mutha RE, Tatiya AU, Surana SJ (2021) Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Future J Pharm Sci 7. https://doi.org/10.1186/s43094-020-00161-8

  19. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines 5. https://doi.org/10.3390/medicines5030093

  20. Zhao J, Yang J, Xie Y (2019) Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm 570:118642

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Article  Google Scholar 

  22. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amarowicz R, Pegg RB (2017) The potential protective effects of phenolic compounds against low-density lipoprotein oxidation. Curr Pharm Des 23. https://doi.org/10.2174/1381612823666170329142936

  24. Bouarab Chibane L, Degraeve P, Ferhout H, Bouajila J, Oulahal N (2019) Plant antimicrobial polyphenols as potential natural food preservatives. J Sci Food Agric 99:1457–1474

    Article  CAS  PubMed  Google Scholar 

  25. Leyva-Jimenez FJ, Lozano-Sanchez J, Borras-Linares I, de la Cadiz-Gurrea ML, Mahmoodi-Khaledi E (2019) Potential antimicrobial activity of honey phenolic compounds against gram positive and gram negative bacteria. LWT 101. https://doi.org/10.1016/j.lwt.2018.11.015

  26. Aguirre-Becerra H, Pineda-Nieto SA, García-Trejo JF, Guevara-González RG, Feregrino-Pérez AA, Álvarez-Mayorga BL, Rivera Pastrana DM (2020) Jacaranda flower (Jacaranda mimosifolia) as an alternative for antioxidant and antimicrobial use. Heliyon 6. https://doi.org/10.1016/j.heliyon.2020.e05802

  27. Takó M, Kerekes EB, Zambrano C, Kotogán A, Papp T, Krisch J, Vágvölgyi C (2020) Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 9:165

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mammadov R, Kaska A, Ozay C (2017) Phenolic composition, antioxidant and cytotoxic activities of Prospero autumnale. Indian J Pharm Sci 79. https://doi.org/10.4172/pharmaceutical-sciences.1000266

  29. Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:386–406

    Article  Google Scholar 

  30. Friedman MC (1997) Biochemistry, and dietary role of potato polyphenols. A review. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  31. Olivas-Quintero S, López-Angulo G, Montes-Avila J, Díaz-Camacho SP, Vega-Aviña R, López-Valenzuela JÁ, Salazar-Salas NY, Delgado-Vargas F (2017) Chemical composition and biological activities of Helicteres vegae and Heliopsis sinaloensis. Pharm Biol 55. https://doi.org/10.1080/13880209.2017.1306712

  32. Chariyakornkul A, Punvittayagul C, Taya S, Wongpoomchai R (2019) Inhibitory effect of purple rice husk extract on AFB1-induced micronucleus formation in rat liver through modulation of xenobiotic metabolizing enzymes. BMC Complement Altern Med 19. https://doi.org/10.1186/s12906-019-2647-9

  33. Mushtaq M, Sultana B, Anwar F, Batool S (2015) Antimutagenic and antioxidant potential of aqueous and acidified methanol extracts from citrus limonum fruit residues. J Chil Chem Soc 60. https://doi.org/10.4067/S0717-97072015000200025

  34. Beaver C, Collins TS, Harbertson J (2020) Red wine phenolic compounds using ultraviolet – visible spectra. Molecules 25:1–8

    Article  Google Scholar 

  35. Fourie E, Aleixandre-Tudo JL, Mihnea M, du Toit W (2020) Partial least squares calibrations and batch statistical process control to monitor phenolic extraction in red wine fermentations under different maceration conditions. Food Control 115. https://doi.org/10.1016/j.foodcont.2020.107303

  36. Fang X, Azain M, Crowe-White K, Mumaw J, Grimes JA, Schmiedt C, Barletta M, Rayalam S, Park HJ (2019) Effect of acute ingestion of green tea extract and lemon juice on oxidative stress and lipid profile in pigs fed a high-fat diet. Antioxidants 8. https://doi.org/10.3390/antiox8060195

  37. Ahn-Jarvis JH, Parihar A, Doseff AI (2019) Dietary flavonoids for immunoregulation and cancer: food design for targeting disease. Antioxidants 8:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buttar HS, Li T, Ravi N (2005) Prevention of cardiovascular diseases: role of exercise, dietary interventions, obesity and smoking cessation. Exp Clin Cardiol 10:229–249

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Katz DL, Doughty K, Ali A (2011) Cocoa and chocolate in human health and disease. Antioxid Redox Signal 15:2779–2811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huxley RR, Neil HAW (2003) The relation between dietary flavonol intake and coronary heart disease mortality: a meta-analysis of prospective cohort studies. Eur J Clin Nutr 57:904–908

    Article  CAS  PubMed  Google Scholar 

  41. Lagiou P, Samoli E, Lagiou A, Tzonou A, Kalandidi A, Peterson J, Dwyer J, Trichpoulos D (2004) Intake of specific flavonoid classes and coronary heart disease – a case-control study in Greece. Eur J Clin Nutr 58. https://doi.org/10.1038/sj.ejcn.1602022

  42. Rimm EB, Katan MB, Ascherio A, Stampfer MJ, Willett WC (1996) Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med 125. https://doi.org/10.7326/0003-4819-125-5-199609010-00005

  43. Hirvonen T, Pietinen P, Virtanen M, Ovaskainen ML, Häkkinen S, Albanes D, Virtamo J (2001) Intake of flavonols and flavones and risk of coronary heart disease in male smokers. Epidemiology 12. https://doi.org/10.1097/00001648-200101000-00011

  44. Bondonno NP, Dalgaard F, Kyrø C, Murray K, Bondonno CP, Lewis JR, Croft KD, Gislason G, Scalbert A, Cassidy A et al (2019) Flavonoid intake is associated with lower mortality in the Danish diet cancer and health cohort. Nat Commun 10. https://doi.org/10.1038/s41467-019-11622-x

  45. Peterson JJ, Dwyer JT, Jacques PF, McCullough ML (2012) Do flavonoids reduce cardiovascular disease incidence or mortality in US and European populations? Nutr Rev 70:491–508

    Article  PubMed  Google Scholar 

  46. Kruger MJ, Davies N, Myburgh KH, Lecour S (2014) Proanthocyanidins, anthocyanins and cardiovascular diseases. Food Res Int 59:41–52

    Article  CAS  Google Scholar 

  47. Wallace TC (2011) Anthocyanins in cardiovascular disease. Adv Nutr 2:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gardner EJ, Ruxton CHS, Leeds AR (2007) Black tea – helpful or harmful? A review of the evidence. Eur J Clin Nutr 61:3–18. https://doi.org/10.1038/SJ.EJCN.1602489

    Article  CAS  PubMed  Google Scholar 

  49. Li D, Wang R, Huang J, Cai Q, Yang CS, Wan X, Xie Z (2019) Effects and mechanisms of tea regulating blood pressure: evidences and promises. Nutrients 11:E1115

    Article  Google Scholar 

  50. Igho-Osagie E, Cara K, Wang D, Yao Q, Penkert LP, Cassidy A, Ferruzzi M, Jacques PF, Johnson EJ, Chung M et al (2020) Short-term tea consumption is not associated with a reduction in blood lipids or pressure: a systematic review and meta-analysis of randomized controlled trials. J Nutr 150. https://doi.org/10.1093/jn/nxaa295

  51. Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004:227–237

    Article  PubMed  PubMed Central  Google Scholar 

  52. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    Article  PubMed  Google Scholar 

  53. Blumberg JB, Vita JA, Oliver Chen CY (2015) Concord grape juice polyphenols and cardiovascular risk factors: dose-response relationships. Nutrients 7. https://doi.org/10.3390/nu7125519

  54. Duffy SJ, Vita JA, Holbrook M, Swerdloff PL, Keaney JF (2001) Effect of acute and chronic tea consumption on platelet aggregation in patients with coronary artery disease. Arterioscler Thromb Vasc Biol 21. https://doi.org/10.1161/01.ATV.21.6.1084

  55. McEwen BJ (2014) The influence of diet and nutrients on platelet function. Semin Thromb Hemost 40. https://doi.org/10.1055/s-0034-1365839

  56. Rees A, Dodd GF, Spencer JPE (2018) The effects of flavonoids on cardiovascular health: a review of human intervention trials and implications for cerebrovascular function. Nutrients 10:1852

    Article  PubMed  PubMed Central  Google Scholar 

  57. Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 154. https://doi.org/10.1093/aje/154.6.495

  58. Tresserra-Rimbau A, Rimm EB, Medina-Remón A, Martínez-González MA, López-Sabater MC, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J et al (2014) Polyphenol intake and mortality risk: a re-analysis of the PREDIMED trial. BMC Med 12. https://doi.org/10.1186/1741-7015-12-77

  59. Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F et al (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis 23. https://doi.org/10.1016/j.numecd.2012.10.008

  60. Sarwar N, Gao P, Kondapally Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet (London, England) 375:2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  61. Anand SS, Dagenais GR, Mohan V, Diaz R, Probstfield J, Freeman R, Shaw J, Lanas F, Avezum A, Budaj A et al (2012) Glucose levels are associated with cardiovascular disease and death in an international cohort of normal glycaemic and dysglycaemic men and women: the EpiDREAM cohort study. Eur J Prev Cardiol 19. https://doi.org/10.1177/1741826711409327

  62. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation 133. https://doi.org/10.1161/CIRCULATIONAHA.116.022194

  63. Paulus WJ, Dal Canto E (2018) Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Fail 6:1–7

    Article  PubMed  Google Scholar 

  64. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC, Gaita F, McMurray JJV (2011) Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J 162. https://doi.org/10.1016/j.ahj.2011.07.030

  66. Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Svensson A-M, Zethelius B, Miftaraj M, McGuire DK, Rosengren A et al (2018) Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 379. https://doi.org/10.1056/nejmoa1800256

  67. Ernande L, Audureau E, Jellis CL, Bergerot C, Henegar C, Sawaki D, Czibik G, Volpi C, Canoui-Poitrine F, Thibault H et al (2017) Clinical implications of echocardiographic phenotypes of patients with diabetes mellitus. J Am Coll Cardiol 70. https://doi.org/10.1016/j.jacc.2017.07.792

  68. Gach O, El Husseini Z, Lancellotti P (2018) Acute coronary syndrome. Rev Med Liege 73. https://doi.org/10.29309/tpmj/2018.25.05.324

  69. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R, Cholesterol Treatment Trialists’ (CTT) Collaborators (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 366. https://doi.org/10.1016/S0140-6736(05)67394-1

  70. Schwartz GG, Olsson AG, Ezekowitz MD, Ganz P, Oliver MF, Waters D, Zeiher A, Chaitman BR, Leslie S, Stern T (2001) Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes the MIRACL study: a randomized controlled trial. J Am Med Assoc 285. https://doi.org/10.1016/S1062-1458(01)00368-3

  71. Mikhail N (2017) Effects of Evolocumab on cardiovascular events. Curr Cardiol Rev 13. https://doi.org/10.2174/1573403x13666170918165713

  72. Zieske AW, Takei H, Fallon KB, Strong JP (1999) Smoking and atherosclerosis in youth. Atherosclerosis 144. https://doi.org/10.1016/S0021-9150(98)00326-8

  73. Hardman RL, Jazaeri O, Yi J, Smith M, Gupta R (2014) Overview of classification systems in peripheral artery disease. Semin Intervent Radiol 31:378–388

    Article  PubMed  PubMed Central  Google Scholar 

  74. Soran H, Dent R, Durrington P (2017) Evidence-based goals in LDL-C reduction. Clin Res Cardiol 106:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aune D, Schlesinger S, Norat T, Riboli E (2018) Tobacco smoking and the risk of abdominal aortic aneurysm: a systematic review and meta-analysis of prospective studies. Sci Rep 8. https://doi.org/10.1038/s41598-018-32100-2

  76. Jha P (2020) The hazards of smoking and the benefits of cessation: a critical summation of the epidemiological evidence in high-income countries. elife 9. https://doi.org/10.7554/ELIFE.49979

  77. Warner TD, Nylander S, Whatling C (2011) Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Br J Clin Pharmacol 72:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mattiello T, Trifirò E, Jotti GS, Pulcinelli FM (2009) Effects of pomegranate juice and extract polyphenols on platelet function. J Med Food 12. https://doi.org/10.1089/jmf.2007.0640

  79. Karlíčková J, Říha M, Filipský T, Macáková K, Hrdina R, Mladěnka P (2015) Antiplatelet effects of flavonoids mediated by inhibition of arachidonic acid based pathway. Planta Med 82. https://doi.org/10.1055/s-0035-1557902

  80. Wu CM, Wu SC, Chung WJ, Lin HC, Chen KT, Chen YC, Hsu MF, Yang JM, Wang JP, Lin CN (2007) Antiplatelet effect and selective binding to cyclooxygenase (COX) by molecular docking analysis of flavonoids and lignans. Int J Mol Sci 8. https://doi.org/10.3390/i8080830

  81. Calixto NO, E Silva MCDC, Gayer CRM, Coelho MGP, Paes MC, Todeschini AR (2007) Antiplatelet activity of geranylgeraniol isolated from Pterodon pubescens fruit oil is mediated by inhibition of cyclooxygenase-1. Planta Med 73. https://doi.org/10.1055/s-2007-967177

  82. Nurtjahja-Tjendraputra E, Ammit AJ, Roufogalis BD, Tran VH, Duke CC (2003) Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res 111. https://doi.org/10.1016/j.thromres.2003.09.009

  83. Bijak M, Saluk-Bijak J (2017) Flavonolignans inhibit the arachidonic acid pathway in blood platelets. BMC Complement Altern Med 17. https://doi.org/10.1186/s12906-017-1897-7

  84. Chang MC, Chang HH, Chan CP, Chou HY, Chang BE, Yeung SY, Wang TM, Jeng JH (2012) Antiplatelet effect of phloroglucinol is related to inhibition of cyclooxygenase, reactive oxygen species, ERK/p38 signaling and thromboxane A2 production. Toxicol Appl Pharmacol 263:287–295. https://doi.org/10.1016/J.TAAP.2012.06.021

    Article  CAS  PubMed  Google Scholar 

  85. Applová L, Karlíčková J, Říha M, Filipský T, Macáková K, Spilková J, Mladěnka P (2017) The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine 35. https://doi.org/10.1016/j.phymed.2017.08.023

  86. Guerrero JA, Lozano ML, Castillo J, Benavente-García O, Vicente V, Rivera J (2005) Flavonoids inhibit platelet function through binding to the thromboxane A2 receptor. J Thromb Haemost 3. https://doi.org/10.1111/j.1538-7836.2004.01099.x

  87. Lee JJ, Jin YR, Lim Y, Hong JT, Kim TJ, Chung JH, Yun YP (2006) Antiplatelet activity of carnosol is mediated by the inhibition of TXA2 receptor and cytosolic calcium mobilization. Vasc Pharmacol 45. https://doi.org/10.1016/j.vph.2006.04.003

  88. Srivastava KC, Tyagi OD (1993) Effects of a garlic-derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets. Prostaglandins Leukot Essent Fat Acids 49. https://doi.org/10.1016/0952-3278(93)90165-S

  89. Ju HK, Lee JG, Park MK, Park SJ, Lee CH, Park JH, Kwon SW (2012) Metabolomic investigation of the anti-platelet aggregation activity of ginsenoside Rk1 reveals attenuated 12-HETE production. J Proteome Res 11. https://doi.org/10.1021/pr300454f

  90. Hanssen NMJ, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JLJM, Heeneman S, Biessen EAL, Daemen MJAP, Brownlee M et al (2014) Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 35. https://doi.org/10.1093/eurheartj/eht402

  91. Rabbani N, Thornalley PJ (2018) Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int 93:803–813

    Article  CAS  PubMed  Google Scholar 

  92. Lo CY, Hsiao WT, Chen XY (2011) Efficiency of trapping methylglyoxal by phenols and phenolic acids. J Food Sci 76. https://doi.org/10.1111/j.1750-3841.2011.02067.x

  93. Totlani VM, Peterson DG (2006) Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: identification and structural elucidation. J Agric Food Chem 54. https://doi.org/10.1021/jf061244r

  94. Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, Tansman L, Chen X, Mani V, Fayad ZA et al (2016) Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia 59. https://doi.org/10.1007/s00125-016-4053-x

  95. Baye E, Kiriakova V, Uribarri J, Moran LJ, De Courten B (2017) Consumption of diets with low advanced glycation end products improves cardiometabolic parameters: meta-analysis of randomised controlled trials. Sci Rep 7. https://doi.org/10.1038/s41598-017-02268-0

  96. Rodríguez JM, Leiva Balich L, Concha MJ, Mizón C, Bunout Barnett D, Barrera Acevedo G, Hirsch Birn S, Jiménez Jaime T, Henríquez S, Uribarri J et al (2015) Reduction of serum advanced glycation end-products with a low calorie Mediterranean diet. Nutr Hosp 31. https://doi.org/10.3305/nh.2015.31.6.8936

  97. Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Camargo A, Perez-Martinez P, Tinahones FJ, Striker GE et al (2018) Mediterranean diet supplemented with coenzyme Q 10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J Gerontol A Biol Sci Med Sci 73. https://doi.org/10.1093/gerona/glw214

  98. Urquiaga I, Ávila F, Echeverria G, Perez D, Trejo S, Leighton F (2017) A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans. Oxidative Med Cell Longev 2017. https://doi.org/10.1155/2017/8361493

  99. Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, Heinecke JW (2010) Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem 285. https://doi.org/10.1074/jbc.M110.118182

  100. Pamplona R, Portero-Otín M, Riba D, Requena JR, Thorpe SR, López-Torres M, Barja G (2000) Low fatty acid unsaturation: a mechanism for lowered lipoperoxidative modification of tissue proteins in mammalian species with long life spans. J Gerontol A Biol Sci Med Sci 55. https://doi.org/10.1093/gerona/55.6.B286

  101. Ruiz MC, Ayala V, Portero-Otín M, Requena JR, Barja G, Pamplona R (2005) Protein methionine content and MDA-lysine adducts are inversely related to maximum life span in the heart of mammals. Mech Ageing Dev 126. https://doi.org/10.1016/j.mad.2005.04.005

  102. Ramkissoon JS, Mahomoodally MF, Ahmed N, Subratty AH (2013) Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian Pac J Trop Med 6. https://doi.org/10.1016/S1995-7645(13)60097-8

  103. Harris CS, Cuerrier A, Lamont E, Haddad PS, Arnason JT, Bennett SAL, Johns T (2014) Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: chemical correlates of in vitro antiglycation activity. Plant Foods Hum Nutr 69. https://doi.org/10.1007/s11130-014-0403-3

  104. Kokkinidou S, Peterson DG (2013) Response surface methodology as optimization strategy for reduction of reactive carbonyl species in foods by means of phenolic chemistry. Food Funct 4. https://doi.org/10.1039/c3fo60032g

  105. Li X, Zheng T, Sang S, Lv L (2014) Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem 62. https://doi.org/10.1021/jf504132x

  106. Lv L, Shao XI, Wang L, Huang D, Ho CT, Sang S (2010) Stilbene glucoside from polygonum multiflorum thunb.: a novel natural inhibitor of advanced glycation end product formation by trapping of methylglyoxal. J Agric Food Chem 58. https://doi.org/10.1021/jf904122q

  107. Shen Y, Xu Z, Sheng Z (2017) Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chem 216. https://doi.org/10.1016/j.foodchem.2016.08.034

  108. Van Den Eynde MDG, Geleijnse JM, Scheijen JLJM, Hanssen NMJ, Dower JI, Afman LA, Stehouwer CDA, Hollman PCH, Schalkwijk CG (2018) Quercetin, but not epicatechin, decreases plasma concentrations of methylglyoxal in adults in a randomized, double-blind, placebo-controlled, crossover trial with pure flavonoids. J Nutr 148. https://doi.org/10.1093/jn/nxy236

  109. Dower JI, Geleijnse JM, Gijsbers L, Zock PL, Kromhout D, Hollman PCH (2015) Effects of the pure flavonoids epicatechin and quercetin on vascular function and cardiometabolic health: a randomized, double-blind, placebo-controlled, crossover trial. Am J Clin Nutr 101. https://doi.org/10.3945/ajcn.114.098590

  110. Zordoky BNM, Robertson IM, Dyck JRB (2014) Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochim Biophys Acta Mol basis Dis 1852:1155–1177

    Article  Google Scholar 

  111. Zhang N, Wei WY, Li LL, Hu C, Tang QZ (2018) Therapeutic potential of polyphenols in cardiac fibrosis. Front Pharmacol 9:122

    Article  PubMed  PubMed Central  Google Scholar 

  112. Han X, Gao S, Cheng Y, Sun Y, Liu W, Tang L, Ren D (2012) Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes. Biosci Trends 6. https://doi.org/10.5582/bst.2012.v6.1.19

  113. Repo-Carrasco-Valencia R, Hellström JK, Pihlava JM, Mattila PH (2010) Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem 120. https://doi.org/10.1016/j.foodchem.2009.09.087

  114. Razavi-Azarkhiavi K, Iranshahy M, Sahebkar A, Shirani K, Karimi G (2016) The protective role of phenolic compounds against doxorubicin-induced cardiotoxicity: a comprehensive review. Nutr Cancer 68:892–917

    Article  CAS  PubMed  Google Scholar 

  115. Sun J, Sun G, Meng X, Wang H, Luo Y, Qin M, Ma B, Wang M, Cai D, Guo P et al (2013) Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS One 8. https://doi.org/10.1371/journal.pone.0064526

  116. Korga A, Józefczyk A, Zgórka G, Homa M, Ostrowska M, Burdan F, Dudka J (2017) Evaluation of the phytochemical composition and protective activities of methanolic extracts of Centaurea borysthenica and Centaurea daghestanica (Lipsky) Wagenitz on cardiomyocytes treated with doxorubicin. Food Nutr Res 61. https://doi.org/10.1080/16546628.2017.1344077

  117. Alhaider IA, Mohamed ME, Ahmed KKM, Kumar AHS (2017) Date palm (Phoenix dactylifera) fruits as a potential cardioprotective agent: the role of circulating progenitor cells. Front Pharmacol 8:592. https://doi.org/10.3389/FPHAR.2017.00592/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  118. Syama HP, Arya AD, Dhanya R, Nisha P, Sundaresan A, Jacob E, Jayamurthy P (2017) Quantification of phenolics in Syzygium cumini seed and their modulatory role on tertiary butyl-hydrogen peroxide-induced oxidative stress in H9c2 cell lines and key enzymes in cardioprotection. J Food Sci Technol 54. https://doi.org/10.1007/s13197-017-2651-3

  119. Garjani A, Tila D, Hamedeyazdan S, Vaez H, Rameshrad M, Pashaii M, Fathiazad F (2017) An investigation on cardioprotective potential of Marrubium vulgare aqueous fraction against ischaemia-reperfusion injury in isolated rat heart. Folia Morphol (Warsz) 76. https://doi.org/10.5603/FM.a2017.0011

  120. Dludla PV, Joubert E, Muller CJF, Louw J, Johnson R (2017) Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutr Metab 14:45

    Article  Google Scholar 

  121. Tian J, Wu X, Zhang M, Zhou Z, Liu Y (2018) Comparative study on the effects of apple peel polyphenols and apple flesh polyphenols on cardiovascular risk factors in mice. Clin Exp Hypertens 40. https://doi.org/10.1080/10641963.2017.1313851

  122. Piano MR (2017) Alcohol’s effects on the cardiovascular system. Alcohol Res 38:219–241

    PubMed  PubMed Central  Google Scholar 

  123. Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G (2009) Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction 104. https://doi.org/10.1111/j.1360-0443.2009.02696.x

  124. Rimm EB, Williams P, Fosher K, Criqui M, Stampfer MJ (1999) Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors. Br Med J 319. https://doi.org/10.1136/bmj.319.7224.1523

  125. Thadhani R, Camargo CA, Stampfer MJ, Curhan GC, Willett WC, Rimm EB (2002) Prospective study of moderate alcohol consumption and risk of hypertension in young women. Arch Intern Med 162. https://doi.org/10.1001/archinte.162.5.569

  126. Leger ASS, Cochrane AL, Moore F (1979) Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 313. https://doi.org/10.1016/S0140-6736(79)92765-X

  127. Renaud S, de Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339. https://doi.org/10.1016/0140-6736(92)91277-F

  128. Lippi G, Franchini M, Favaloro EJ, Targher G (2010) Moderate red wine consumption and cardiovascular disease risk: beyond the French paradox. Semin Thromb Hemost 36:59–70

    Article  CAS  PubMed  Google Scholar 

  129. Haseeb S, Alexander B, Baranchuk A, Electrophysiology C (2017) Wine and cardiovascular health a comprehensive review in depth. Circulation 136:1434–1448

    Article  CAS  PubMed  Google Scholar 

  130. Ditano-Vázquez P, Torres-Peña JD, Galeano-Valle F, Pérez-Caballero AI, Demelo-Rodríguez P, Lopez-Miranda J, Katsiki N, Delgado-Lista J, Alvarez-Sala-Walther LA (2019) The fluid aspect of the mediterranean diet in the prevention and management of cardiovascular disease and diabetes: the role of polyphenol content in moderate consumption of wine and olive oil. Nutrients 11:2833

    Article  PubMed  PubMed Central  Google Scholar 

  131. Castaldo L, Narváez A, Izzo L, Graziani G, Gaspari A, Minno G, Di; Ritieni, A. (2019) Red wine consumption and cardiovascular health. Molecules 24:3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hansen AS, Marckmann P, Dragsted LO, Finné Nielsen IL, Nielsen SE, Grønbæk M (2005) Effect of red wine and red grape extract on blood lipids, haemostatic factors, and other risk factors for cardiovascular disease. Eur J Clin Nutr 59. https://doi.org/10.1038/sj.ejcn.1602107

  133. Truelsen T, Grønbæk M, Schnohr P, Boysen G (1998) Intake of beer, wine, and spirits and risk of stroke: the Copenhagen City heart study. Stroke 29. https://doi.org/10.1161/01.STR.29.12.2467

  134. Gronbaek M, Becker U, Johansen D, Gottschau A, Schnohr P, Hein HO, Jensen G, Sorensen TIA (2000) Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann Intern Med 133. https://doi.org/10.7326/0003-4819-133-6-200009190-00008

  135. Klatsky AL (1999) Moderate drinking and reduced risk of heart disease. Alcohol Res Health 23:15–23

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mostofsky E, Mukamal KJ, Giovannucci EL, Stampfer MJ, Rimm EB (2016) Key findings on alcohol consumption and a variety of health outcomes from the nurses’ health study. Am J Public Health 106:1586–1591

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C et al (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab 19. https://doi.org/10.1111/dom.12811

  138. Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13. https://doi.org/10.1016/j.cmet.2011.02.018

  139. Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 6. https://doi.org/10.1128/mBio.02481-14

  140. Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W, Gupta N, Skye SM, Cody DB, Levison BS et al (2018) Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med 24. https://doi.org/10.1038/s41591-018-0128-1

  141. Li Q, Gao B, Siqin B, He Q, Zhang R, Meng X, Zhang N, Zhang N, Li M (2021) Gut microbiota: a novel regulator of cardiovascular disease and key factor in the therapeutic effects of flavonoids. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.651926

  142. Wilson Tang WH, Hazen SL (2017) The gut microbiome and its role in cardiovascular diseases. Circulation 135. https://doi.org/10.1161/CIRCULATIONAHA.116.024251

  143. Pluznick JL (2017) Microbial short-chain fatty acids and blood pressure regulation. Curr Hypertens Rep 19:25

    Article  PubMed  PubMed Central  Google Scholar 

  144. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE, Pluznick JL (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics 48. https://doi.org/10.1152/physiolgenomics.00089.2016

  145. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J, Brunet I, Wan LX, Rey F, Wang T et al (2013) Olfactory receptor responding to gut microbiotaderived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A 110. https://doi.org/10.1073/pnas.1215927110

  147. Jia Q, Xie Y, Lu C, Zhang A, Lu Y, Lv S, Zhang J (2019) Endocrine organs of cardiovascular diseases: gut microbiota. J Cell Mol Med 23:2314–2323

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP, Chen LL, Ruan SC, Lin JH, Lin PJ et al (2019) Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation 139. https://doi.org/10.1161/CIRCULATIONAHA.118.035235

  149. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472. https://doi.org/10.1038/nature09922

  150. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19. https://doi.org/10.1038/nm.3145

  151. Ufnal M, Jazwiec R, Dadlez M, Drapala A, Sikora M, Skrzypecki J (2014) Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol 30. https://doi.org/10.1016/j.cjca.2014.09.010

  152. Wu H, Kim M, Han J (2016) Icariin metabolism by human intestinal microflora. Molecules 21. https://doi.org/10.3390/molecules21091158

  153. Borradaile NM, De Dreu LE, Huff MW (2003) Inhibition of net HepG2 cell apolipoprotein B secretion by the citrus flavonoid naringenin involves activation of phosphatidylinositol 3-kinase, independent of insulin receptor substrate-1 phosphorylation. Diabetes 52. https://doi.org/10.2337/diabetes.52.10.2554

  154. Wilcox LJ, Borradaile NM, De Dreu LE, Huff MW (2001) Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 42. https://doi.org/10.1016/s0022-2275(20)31634-5

  155. Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58. https://doi.org/10.2337/db09-0634

  156. Fukuchi Y, Hiramitsu M, Okada M, Hayashi S, Nabeno Y, Osawa T, Naito M (2008) Lemon polyphenols suppress diet-induced obesity by up-regulation of mRNA levels of the enzymes involved in β-oxidation in mouse white adipose tissue. J Clin Biochem Nutr 43. https://doi.org/10.3164/jcbn.2008066

  157. Yamada T, Hayasaka S, Shibata Y, Ojima T, Saegusa T, Gotoh T, Ishikawa S, Nakamura Y, Kayaba K (2011) Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study. J Epidemiol 21. https://doi.org/10.2188/jea.JE20100084

  158. Choe SC, Kim HS, Jeong TS, Bok SH, Park YB (2001) Naringin has an antiatherogenic effect with the inhibition of intercellular adhesion molecule-1 in hypercholesterolemic rabbits. J Cardiovasc Pharmacol 38. https://doi.org/10.1097/00005344-200112000-00017

  159. Vergès B (2015) Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia 58:886–899

    Article  PubMed  PubMed Central  Google Scholar 

  160. Allister EM, Mulvihill EE, Barrett PHR, Edwards JY, Carter LP, Huff MW (2008) Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 49. https://doi.org/10.1194/jlr.M800297-JLR200

  161. Ciumărnean L, Milaciu MV, Runcan O, Vesa SC, Răchisan AL, Negrean V, Perné MG, Donca VI, Alexescu TG, Para I et al (2020) The effects of flavonoids in cardiovascular diseases. Molecules 25:4320

    Article  PubMed  PubMed Central  Google Scholar 

  162. Scholz EP, Zitron E, Katus HA, Karle CA (2010) Cardiovascular ion channels as a molecular target of flavonoids. Cardiovasc Ther 28:e46–e52

    Article  CAS  PubMed  Google Scholar 

  163. Pacurari M, Kafoury R, Tchounwou PB, Ndebele K (2014) The renin-angiotensin-aldosterone system in vascular inflammation and remodeling. Int J Inflamm 2014:689360

    Google Scholar 

  164. Sandoo A, Veldhuijzen van Zanten JJC, Metsios GS, Carroll D, Kitas GD (2015) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4. https://doi.org/10.2174/1874192401004010302

  165. Olaleye MT, Crown OO, Akinmoladun AC, Akindahunsi AA (2014) Rutin and quercetin show greater efficacy than nifedipin in ameliorating hemodynamic, redox, and metabolite imbalances in sodium chloride-induced hypertensive rats. Hum Exp Toxicol 33. https://doi.org/10.1177/0960327113504790

  166. Calfío C, Huidobro-Toro JP (2019) Potent vasodilator and cellular antioxidant activity of endemic patagonian calafate berries (berberis microphylla) with nutraceutical potential. Molecules 24. https://doi.org/10.3390/molecules24152700

  167. Abdallah HM, Hassan NA, El-Halawany AM, Mohamed GA, Safo MK, El-Bassossy HM (2020) Major flavonoids from Psiadia punctulata produce vasodilation via activation of endothelial dependent NO signaling. J Adv Res 24. https://doi.org/10.1016/j.jare.2020.01.002

  168. Saponara S, Testai L, Iozzi D, Martinotti E, Martelli A, Chericoni S, Sgaragli G, Fusi F, Calderone V (2006) (+/−)-Naringenin as large conductance Ca(2+)-activated K+ (BKCa) channel opener in vascular smooth muscle cells. Br J Pharmacol 149:1013–1021. https://doi.org/10.1038/SJ.BJP.0706951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Yang Y, Li PY, Cheng J, Mao L, Wen J, Tan XQ, Liu ZF, Zeng XR (2013) Function of BKCa channels is reduced in human vascular smooth muscle cells from han chinese patients with hypertension. Hypertension 61. https://doi.org/10.1161/HYPERTENSIONAHA.111.00211

  170. Yamamoto M, Jokura H, Hashizume K, Ominami H, Shibuya Y, Suzuki A, Hase T, Shimotoyodome A (2013) Hesperidin metabolite hesperetin-7-O-glucuronide, but not hesperetin-3′-O-glucuronide, exerts hypotensive, vasodilatory, and anti-inflammatory activities. Food Funct 4:1346–1351. https://doi.org/10.1039/C3FO60030K

    Article  CAS  PubMed  Google Scholar 

  171. Liu Y, Niu L, Cui L, Hou X, Li J, Zhang X, Zhang M (2014) Hesperetin inhibits rat coronary constriction by inhibiting Ca2+ influx and enhancing voltage-gated K+ channel currents of the myocytes. Eur J Pharmacol 735. https://doi.org/10.1016/j.ejphar.2014.03.057

  172. Vogel RA (2002) Alcohol, heart disease, and mortality: a review. Rev Cardiovasc Med 3:7–13

    PubMed  Google Scholar 

  173. Cassidy A, Mukamal KJ, Liu L, Franz M, Eliassen AH, Rimm EB (2013) High anthocyanin intake is associated with a reduced risk of myocardial infarction in young and middle-aged women. Circulation 127. https://doi.org/10.1161/CIRCULATIONAHA.112.122408

  174. Lin B (2012) Polyphenols and neuroprotection against ischemia and neurodegeneration. Mini Rev Med Chem 11. https://doi.org/10.2174/13895575111091222

  175. Ferrières J (2004) The French paradox: lessons for other countries. Heart 90:107–111

    Article  PubMed  PubMed Central  Google Scholar 

  176. Artham SM, Lavie CJ, Milani RV, Ventura HO (2009) Obesity and hypertension, heart failure, and coronary heart disease – risk factor, paradox, and recommendations for weight loss. Ochsner J 9:124–132

    PubMed  PubMed Central  Google Scholar 

  177. Magyar K, Halmosi R, Palfi A, Feher G, Czopf L, Fulop A, Battyany I, Sumegi B, Toth K, Szabados E (2012) Cardioprotection by resveratrol: a human clinical trial in patients with stable coronary artery disease. Clin Hemorheol Microcirc 50. https://doi.org/10.3233/CH-2011-1424

  178. Behbahani J, Thandapilly SJ, Louis XL, Huang Y, Shao Z, Kopilas MA, Wojciechowski P, Netticadan T, Anderson HD (2010) Resveratrol and small artery compliance and remodeling in the spontaneously hypertensive rat. Am J Hypertens 23. https://doi.org/10.1038/ajh.2010.161

  179. Thandapilly SJ, Louis XL, Behbahani J, Movahed A, Yu L, Fandrich R, Zhang S, Kardami E, Anderson HD, Netticadan T (2013) Reduced hemodynamic load aids low-dose resveratrol in reversing cardiovascular defects in hypertensive rats. Hypertens Res 36. https://doi.org/10.1038/hr.2013.55

  180. Liu Y, Ma W, Zhang P, He S, Huang D (2015) Effect of resveratrol on blood pressure: a meta-analysis of randomized controlled trials. Clin Nutr 34. https://doi.org/10.1016/j.clnu.2014.03.009

  181. Riche DM, Riche KD, Blackshear CT, McEwen CL, Sherman JJ, Wofford MR, Griswold ME (2014) Pterostilbene on metabolic parameters: A randomized, double-blind, and placebo-controlled trial. Evid Based Complement Altern Med 2014. https://doi.org/10.1155/2014/459165

  182. Olas B, Wachowicz B, Saluk-Juszczak J, Zieliński T (2002) Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb Res 107. https://doi.org/10.1016/S0049-3848(02)00273-6

  183. Stef G, Csiszar A, Lerea K, Ungvari Z, Veress G (2006) Resveratrol inhibits aggregation of platelets from high-risk cardiac patients with aspirin resistance. J Cardiovasc Pharmacol 48. https://doi.org/10.1097/01.fjc.0000238592.67191.ab

  184. Zbikowska HM, Olas B, Wachowicz B, Krajewski T (1999) Response of blood platelets to resveratrol. Platelets 10. https://doi.org/10.1080/09537109976103

  185. Olas B, Wachowicz B, Holmsen H, Fukami MH (2005) Resveratrol inhibits polyphosphoinositide metabolism in activated platelets. Biochim Biophys Acta Biomembr 1714. https://doi.org/10.1016/j.bbamem.2005.06.008

  186. Shen MY, Hsiao G, Liu CL, Fong TH, Lin KH, Chou DS, Sheu JR (2007) Inhibitory mechanisms of resveratrol in platelet activation: pivotal roles of p38 MAPK and NO/cyclic GMP. Br J Haematol 139. https://doi.org/10.1111/j.1365-2141.2007.06788.x

  187. Ou HC, Chou FP, Sheen HM, Lin TM, Yang CH, Huey-Herng Sheu W (2006) Resveratrol, a polyphenolic compound in red wine, protects against oxidized LDL-induced cytotoxicity in endothelial cells. Clin Chim Acta 364. https://doi.org/10.1016/j.cccn.2005.06.018

  188. Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB (2013) Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol 698. https://doi.org/10.1016/j.ejphar.2012.08.024

  189. Zhang L, Zhou GZ, Song W, Tan XR, Guo YQ, Zhou B, Jing H, Zhao SJ, Chen LK (2012) Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 17. https://doi.org/10.1007/s10495-011-0653-6

  190. Zhang L, Cui LQ, Zhou GZ, Jing HJ, Guo YQ, Sun WK (2013) Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem 24. https://doi.org/10.1016/j.jnutbio.2012.06.008

  191. Zhang Y, Zhang Y (2016) Pterostilbene, a novel natural plant conduct, inhibits high fat-induced atherosclerosis inflammation via NF-κB signaling pathway in toll-like receptor 5 (TLR5) deficient mice. Biomed Pharmacother 81. https://doi.org/10.1016/j.biopha.2016.04.031

  192. Park ES, Lim Y, Hong JT, Yoo HS, Lee CK, Pyo MY, Yun YP (2010) Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vasc Pharmacol 53. https://doi.org/10.1016/j.vph.2010.04.001

  193. Llarena M, Andrade F, Hasnaoui M, Portillo MP, Pérez-Matute P, Arbones-Mainar JM, Hijona E, Villanueva-Millán MJ, Aguirre L, Carpéné C et al (2016) Potential renoprotective effects of piceatannol in ameliorating the early-stage nephropathy associated with obesity in obese Zucker rats. J Physiol Biochem 72. https://doi.org/10.1007/s13105-015-0457-1

  194. Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T (2015) Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull 38. https://doi.org/10.1248/bpb.b15-00009

  195. Palmer RM (1993) The L-arginine: nitric oxide pathway. Curr Opin Nephrol Hypertens 2:122–128

    Article  CAS  PubMed  Google Scholar 

  196. Wallerath T, Deckert G, Ternes T, Anderson H, Li H, Witte K, Förstermann U (2002) Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106. https://doi.org/10.1161/01.CIR.0000029925.18593.5C

  197. Li H, Wallerath T, Förstermann U (2002) Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide Biol Chem 7:132–147

    Article  CAS  Google Scholar 

  198. Kostyuk VA, Potapovich AI, Suhan TO, De Luca C, Korkina LG (2011) Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation. Eur J Pharmacol 658. https://doi.org/10.1016/j.ejphar.2011.02.022

  199. Soares DG, Andreazza AC, Salvador M (2003) Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems. J Agric Food Chem 51. https://doi.org/10.1021/jf020864z

  200. King RE, Kent KD, Bomser JA (2005) Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151. https://doi.org/10.1016/j.cbi.2004.11.003

  201. Chan CM, Huang CH, Li HJ, Hsiao CY, Su CC, Lee PL, Hung CF (2015) Protective effects of resveratrol against UVA-induced damage in ARPE19 cells. Int J Mol Sci 16. https://doi.org/10.3390/ijms16035789

  202. Neal SE, Buehne KL, Besley NA, Yang P, Silinski P, Hong J, Ryde IT, Meyer JN, Jaffe GJ (2020) Resveratrol protects against hydroquinone-induced oxidative threat in retinal pigment epithelial cells. Investig Ophthalmol Vis Sci 61. https://doi.org/10.1167/iovs.61.4.32

  203. Losa GA (2003) Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells. Eur J Clin Investig 33. https://doi.org/10.1046/j.1365-2362.2003.01219.x

  204. Guo R, Su Y, Liu B, Li S, Zhou S, Xu Y (2014) Resveratrol suppresses oxidised low-density lipoprotein-induced macrophage apoptosis through inhibition of intracellular reactive oxygen species generation, lox-1, and the p38 MAPK pathway. Cell Physiol Biochem 34. https://doi.org/10.1159/000363026

  205. Olas B, Wachowicz B (2002) Resveratrol and vitamin C as antioxidants in blood platelets. Thromb Res 106. https://doi.org/10.1016/S0049-3848(02)00101-9

  206. Tadolini B, Juliano C, Piu L, Franconi F, Cabrini L (2000) Resveratrol inhibition of lipid peroxidation. Free Radic Res 33. https://doi.org/10.1080/10715760000300661

  207. Ahmad KA, Clement MV, Pervaiz S (2003) Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide – induced apoptosis. Proc Ann N Y Acad Sci 1010:365–373

    Article  CAS  Google Scholar 

  208. Amato C (1994) Advantage of a micronized flavonoidic fraction (Daflon 500 mg) in comparison with a nonmicronized diosmin. Proc Angiol 45:531–536

    CAS  Google Scholar 

  209. Maksimović ZV, Maksimović M, Jadranin D, Kuzmanović I, Andonović O (2008) Medicamentous treatment of chronic venous insufficiency using semisynthetic diosmin – a prospective study. Acta Chir Iugosl 55. https://doi.org/10.2298/ACI0804053M

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chopra, H., Bibi, S., Mohanta, Y.K., Kumari, S., Baig, A.A. (2023). Role of Polyphenols in Cardiovascular Diseases. In: Arunachalam, K., Yang, X., Puthanpura Sasidharan, S. (eds) Bioprospecting of Tropical Medicinal Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-28780-0_35

Download citation

Publish with us

Policies and ethics