Skip to main content

Abstract

Despite significant advances in early diagnosis and the development of new therapeutic options, prostate cancer (PCa) is still the second major cause of cancer death in men worldwide. In fact, due to the general increase in life expectancy in combination with more widely available sensitive screening tools, it is anticipated that incidence and prevalence of the disease will continue to increase, making PCa a serious global health problem. The management of PCa patients requires a multidisciplinary approach to choose the best and most efficient imaging modality and to select the best therapeutic option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. https://doi.org/10.3322/caac.21551.

    Article  PubMed  Google Scholar 

  2. Cotter K, Konety B, Ordonez MA. Contemporary management of prostate cancer. F1000Res. 2016;2016:5. https://doi.org/10.12688/f1000research.7183.1.

    Article  Google Scholar 

  3. Yadav SS, Stockert JA, Hackert V, Yadav KK, Tewari AK. Intratumor heterogeneity in prostate cancer. Urol Oncol. 2018;36(8):349–60. https://doi.org/10.1016/j.urolonc.2018.05.008.

    Article  PubMed  Google Scholar 

  4. Amin MB, Edge SB, Greene FL, Byrd DR, Brookland RK, Washington MK, et al. AJCC cancer staging manual. Berlin: Springer; 2018. p. 1032.

    Google Scholar 

  5. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2014;2014:20151. https://doi.org/10.1097/pas.0000000000000530.

    Article  Google Scholar 

  6. Gospodarowicz MK, Brierley JD, Wittekind C. TNM classification of malignant tumours. Hoboken: Wiley; 2017. p. 272.

    Google Scholar 

  7. D’Amico AV. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969. https://doi.org/10.1001/jama.280.11.969.

    Article  PubMed  Google Scholar 

  8. Morgan TM, Welty CJ, Vakar-Lopez F, Lin DW, Wright JL. Ductal adenocarcinoma of the prostate: increased mortality risk and decreased serum prostate specific antigen. J Urol. 2010;184(6):2303–7. https://doi.org/10.1016/j.juro.2010.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marshall CH, Sokolova AO, McNatty AL, Cheng HH, Eisenberger MA, Bryce AH et al. Differential response to olaparib treatment among men with metastatic castration-resistant prostate cancer harboring BRCA1 or BRCA2 versus ATM mutations. Eur Urol. 2019. https://doi.org/10.1016/j.eururo.2019.02.002.

  10. Inamura K. Prostatic cancers: understanding their molecular pathology and the 2016 WHO classification. Oncotarget. 2018;9(18):14723–37. https://doi.org/10.18632/oncotarget.24515.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging - reporting and data system: 2015, version 2. Eur Urol. 2016;69(1):16–40. https://doi.org/10.1016/j.eururo.2015.08.052.

    Article  PubMed  Google Scholar 

  12. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019. https://doi.org/10.1016/j.eururo.2019.02.033.

  13. Sathianathen NJ, Butaney M, Bongiorno C, Konety BR, Bolton DM, Lawrentschuk N. Accuracy of the magnetic resonance imaging pathway in the detection of prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2019;22(1):39–48. https://doi.org/10.1038/s41391-018-0075-4.

    Article  PubMed  Google Scholar 

  14. Sheridan AD, Nath SK, Syed JS, Aneja S, Sprenkle PC, Weinreb JC, et al. Risk of clinically significant prostate cancer associated with prostate imaging reporting and data system category 3 (equivocal) lesions identified on multiparametric prostate MRI. Am J Roentgenol. 2018;210(2):347–57. https://doi.org/10.2214/ajr.17.18516.

    Article  Google Scholar 

  15. Barth BK, De Visschere PJL, Cornelius A, Nicolau C, Vargas HA, Eberli D, et al. Detection of clinically significant prostate cancer: short dual-pulse sequence versus standard multiparametric MR imaging-a multireader study. Radiology. 2017;284(3):725–36. https://doi.org/10.1148/radiol.2017162020.

    Article  PubMed  Google Scholar 

  16. Triantafyllou M, Studer UE, Birkhäuser FD, Fleischmann A, Bains LJ, Petralia G, et al. Ultrasmall superparamagnetic particles of iron oxide allow for the detection of metastases in normal sized pelvic lymph nodes of patients with bladder and/or prostate cancer. Eur J Cancer. 2013;49(3):616–24. https://doi.org/10.1016/j.ejca.2012.09.034.

    Article  CAS  PubMed  Google Scholar 

  17. Fortuin AS, Brüggemann R, van der Linden J, Panfilov I, Israël B, Scheenen TWJ, et al. Ultra-small superparamagnetic iron oxides for metastatic lymph node detection: back on the block. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10(1):1471. https://doi.org/10.1002/wnan.1471.

    Article  CAS  Google Scholar 

  18. Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171(6):2122–7. https://doi.org/10.1097/01.ju.0000123981.03084.06.

    Article  PubMed  Google Scholar 

  19. Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34(12):1402–18. https://doi.org/10.1200/JCO.2015.64.2702.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carroll PH, Mohler JL. NCCN guidelines updates: prostate cancer and prostate cancer early detection. J Natl Compr Cancer Netw. 2018;16(5S):620–3. https://doi.org/10.6004/jnccn.2018.0036.

    Article  Google Scholar 

  21. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer. Eur Urol. 2012;62(1):68–75. https://doi.org/10.1016/j.eururo.2012.02.020.

    Article  PubMed  Google Scholar 

  22. Jadvar H. Is there use for FDG-PET in prostate cancer. Semin Nucl Med. 2016;46(6):502–6. https://doi.org/10.1053/j.semnuclmed.2016.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical PET imaging in prostate cancer. Radiographics. 2017;37(5):1512–36. https://doi.org/10.1148/rg.2017170035.

    Article  PubMed  Google Scholar 

  24. Jadvar H, Desai B, Ji L, Conti PS, Dorff TB, Groshen SG, et al. Prospective evaluation of 18F-NaF and 18F-FDG PET/CT in detection of occult metastatic disease in biochemical recurrence of prostate cancer. Clin Nucl Med. 2012;37(7):637–43. https://doi.org/10.1097/rlu.0b013e318252d829.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spratt DE, Gavane S, Tarlinton L, Fareedy SB, Doran MG, Zelefsky MJ, et al. Utility of FDG-PET in clinical neuroendocrine prostate cancer. Prostate. 2014;74(11):1153–9. https://doi.org/10.1002/pros.22831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hofman MS, Violet J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):825–33. https://doi.org/10.1016/S1470-2045(18)30198-0.

    Article  CAS  PubMed  Google Scholar 

  27. Hofman MS, Emmett L, Sandhu S, Iravani A, Joshua AM, Goh JC, et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet. 2021;397(10276):797–804. https://doi.org/10.1016/S0140-6736(21)00237-3.

    Article  CAS  PubMed  Google Scholar 

  28. Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835–48. https://doi.org/10.1038/nrc3162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cuccurullo V, Di Stasio GD, Mansi L. Nuclear medicine in prostate cancer: a new era for radiotracers. World J Nucl Med. 2018;17(2):70–8. https://doi.org/10.4103/wjnm.WJNM_54_17.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254(3):925–33. https://doi.org/10.1148/radiol.09090413.

    Article  PubMed  Google Scholar 

  31. Evangelista L, Cimitan M, Zattoni F, Guttilla A, Zattoni F, Saladini G. Comparison between conventional imaging (abdominal-pelvic computed tomography and bone scan) and [(18)F]choline positron emission tomography/computed tomography imaging for the initial staging of patients with intermediate- to high-risk prostate cancer: a retrospective analysis. Scand J Urol. 2015;49(5):345–53. https://doi.org/10.3109/21681805.2015.1005665.

    Article  CAS  PubMed  Google Scholar 

  32. Castellucci P, Ceci F, Fanti S. Imaging of prostate cancer using 11C-choline PET/computed tomography. Urol Clin North Am. 2018;45(3):481–7. https://doi.org/10.1016/j.ucl.2018.03.007.

    Article  PubMed  Google Scholar 

  33. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2017;71(4):618–29. https://doi.org/10.1016/j.eururo.2016.08.003.

    Article  PubMed  Google Scholar 

  34. Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New clinical indications for (18)F/(11)C-choline, new tracers for positron emission tomography and a promising hybrid device for prostate cancer staging: a systematic review of the literature. Eur Urol. 2016;70(1):161–75. https://doi.org/10.1016/j.eururo.2016.01.029.

    Article  PubMed  Google Scholar 

  35. Yoshimoto M, Waki A, Yonekura Y, Sadato N, Murata T, Omata N, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28(2):117–22.

    Article  CAS  PubMed  Google Scholar 

  36. Oyama N, Akino H, Kanamaru H, Suzuki Y, Muramoto S, Yonekura Y, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43(2):181–6.

    CAS  PubMed  Google Scholar 

  37. Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, et al. Application of C-11-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 2013;112(8):1062–72. https://doi.org/10.1111/bju.12279.

    Article  CAS  PubMed  Google Scholar 

  38. Brogsitter C, Zöphel K, Kotzerke J. 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging. 2013;40(Suppl 1):S18–27. https://doi.org/10.1007/s00259-013-2358-2.

    Article  CAS  PubMed  Google Scholar 

  39. Ren J, Yuan L, Wen G, Yang J. The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol. 2016;57(4):487–93. https://doi.org/10.1177/0284185115581541.

    Article  PubMed  Google Scholar 

  40. Nanni C, Schiavina R, Boschi S, Ambrosini V, Pettinato C, Brunocilla E, et al. Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging. 2013;40(1):11–7. https://doi.org/10.1007/s00259-013-2373-3.

    Article  CAS  Google Scholar 

  41. Nuñez R, Macapinlac HA, Yeung HW, Akhurst T, Cai S, Osman I, et al. Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med. 2002;43(1):46–55.

    PubMed  Google Scholar 

  42. Tóth G, Lengyel Z, Balkay L, Salah MA, Trón L, Tóth C. Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol. 2005;173(1):66–9; discussion 69. https://doi.org/10.1097/01.ju.0000148326.71981.44.

    Article  PubMed  Google Scholar 

  43. Sarrouilhe D, Clarhaut J, Defamie N, Mesnil M. Serotonin and cancer: what is the link. Curr Mol Med. 2015;15(1):62–77.

    Article  CAS  PubMed  Google Scholar 

  44. Koglin N, Mueller A, Berndt M, Schmitt-Willich H, Toschi L, Stephens AW, et al. Specific PET imaging of xC-transporter activity using a18F-labeled glutamate derivative reveals a dominant pathway in tumor metabolism. Clin Cancer Res. 2011;17(18):6000–11. https://doi.org/10.1158/1078-0432.ccr-11-0687.

    Article  CAS  PubMed  Google Scholar 

  45. Park SY, Na SJ, Kumar M, Mosci C, Wardak M, Koglin N, et al. Clinical evaluation of (4S)-4-(3-[18F]Fluoropropyl)-L-glutamate (18F-FSPG) for PET/CT imaging in patients with newly diagnosed and recurrent prostate cancer. Clin Cancer Res. 2020;26(20):5380–7. https://doi.org/10.1158/1078-0432.CCR-20-0644.

    Article  CAS  PubMed  Google Scholar 

  46. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol. 2004;6(Suppl 10):S13–8.

    PubMed  PubMed Central  Google Scholar 

  47. O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J Nucl Med. 2018;59(7):1007–13. https://doi.org/10.2967/jnumed.117.203877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boegemann M, Schrader AJ, Rahbar K. 177Lu-PSMA therapy: current evidence for use in the treatment of patients with metastatic prostate cancer. Urologe A. 2017;56(11):1440–4. https://doi.org/10.1007/s00120-017-0510-5.

    Article  CAS  PubMed  Google Scholar 

  49. Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(12):2055–61. https://doi.org/10.1007/s00259-018-4089-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Afshar-Oromieh A, Holland-Letz T, Giesel FL, Kratochwil C, Mier W, Haufe S, et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: evaluation in 1007 patients. Eur J Nucl Med Mol Imaging. 2017;44(8):1258–68. https://doi.org/10.1007/s00259-017-3711-7.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tan N, Bavadian N, Calais J, Oyoyo U, Kim J, Turkbey IB, et al. Imaging of prostate specific membrane antigen targeted radiotracers for the detection of prostate cancer biochemical recurrence after definitive therapy: a systematic review and meta-analysis. J Urol. 2019;202(2):231–40. https://doi.org/10.1097/JU.0000000000000198.

    Article  PubMed  Google Scholar 

  52. Afshar-Oromieh A, da Cunha ML, Wagner J, Haberkorn U, Debus N, Weber W, et al. Performance of [68Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy-a multi-centre evaluation of 2533 patients. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05189-3.

  53. Bravaccini S, Puccetti M, Bocchini M, Ravaioli S, Celli M, Scarpi E, et al. PSMA expression: a potential ally for the pathologist in prostate cancer diagnosis. Sci Rep. 2018;8(1):4254. https://doi.org/10.1038/s41598-018-22594-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014–24. https://doi.org/10.1007/s00259-017-3670-z.

    Article  PubMed  Google Scholar 

  55. Rauscher I, Maurer T, Fendler WP, Sommer WH, Schwaiger M, Eiber M. 68Ga-PSMA ligand PET/CT in patients with prostate cancer: how we review and report. Cancer Imaging. 2016;16(1):14. https://doi.org/10.1186/s40644-016-0072-6.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prasad V, Steffen IG, Diederichs G, Makowski MR, Wust P, Brenner W. Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol. 2016;18(3):428–36. https://doi.org/10.1007/s11307-016-0945-x.

    Article  CAS  PubMed  Google Scholar 

  57. Giesel FL, Hadaschik B, Cardinale J, Radtke J, Vinsensia M, Lehnert W, et al. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2017;44(4):678–88. https://doi.org/10.1007/s00259-016-3573-4.

    Article  CAS  PubMed  Google Scholar 

  58. Wondergem M, Jansen BHE, van der Zant FM, van der Sluis TM, Knol RJJ, van Kalmthout LWM, et al. Early lesion detection with 18F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2019;46(9):1911–8. https://doi.org/10.1007/s00259-019-04385-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Awenat S, Piccardo A, Carvoeiras P, Signore G, Giovanella L, Prior JO, et al. Diagnostic role of 18F-PSMA-1007 PET/CT in prostate cancer staging: a systematic review. Diagnostics. 2021;11(3):552. https://doi.org/10.3390/diagnostics11030552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rauscher I, Krönke M, König M, Gafita A, Maurer T, Horn T, et al. Matched-pair comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: frequency of pitfalls and detection efficacy in biochemical recurrence after radical prostatectomy. J Nucl Med. 2020;61(1):51–7. https://doi.org/10.2967/jnumed.119.229187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rathkopf D, Scher HI. Androgen receptor antagonists in castration-resistant prostate cancer. Cancer J. 2013;19(1):43–9. https://doi.org/10.1097/ppo.0b013e318282635a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ceder Y, Bjartell A, Culig Z, Rubin MA, Tomlins S, Visakorpi T. The molecular evolution of castration-resistant prostate cancer. Eur Urol Focus. 2016;2(5):506–13. https://doi.org/10.1016/j.euf.2016.11.012.

    Article  PubMed  Google Scholar 

  63. Wibmer AG, Burger IA, Sala E, Hricak H, Weber WA, Vargas HA. Molecular imaging of prostate cancer. Radiographics. 2016;36(1):142–59. https://doi.org/10.1148/rg.2016150059.

    Article  PubMed  Google Scholar 

  64. Vargas HA, Kramer GM, Scott AM, Weickhardt A, Meier AA, Parada N, et al. Reproducibility and repeatability of semiquantitative 18F-fluorodihydrotestosterone uptake metrics in castration-resistant prostate cancer metastases: a prospective multicenter study. J Nucl Med. 2018;59(10):1516–23. https://doi.org/10.2967/jnumed.117.206490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mansi R, Fleischmann A, Mäcke HR, Reubi JC. Targeting GRPR in urological cancers–from basic research to clinical application. Nat Rev Urol. 2013;10(4):235–44. https://doi.org/10.1038/nrurol.2013.42.

    Article  CAS  PubMed  Google Scholar 

  66. Sah B-R, Burger IA, Schibli R, Friebe M, Dinkelborg L, Graham K, et al. Dosimetry and first clinical evaluation of the new 18F-radiolabeled bombesin analogue BAY 864367 in patients with prostate cancer. J Nucl Med. 2015;56(3):372–8. https://doi.org/10.2967/jnumed.114.147116.

    Article  CAS  PubMed  Google Scholar 

  67. Kahkonen E, Jambor I, Kemppainen J, Lehtio K, Gronroos TJ, Kuisma A, et al. In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res. 2013;19:5434–43. https://doi.org/10.1158/1078-0432.ccr-12-3490.

    Article  PubMed  Google Scholar 

  68. Faviana P, Boldrini L, Erba PA, Di Stefano I, Manassero F, Bartoletti R, et al. Gastrin-releasing peptide receptor in low grade prostate cancer: can it be a better predictor than prostate-specific membrane antigen. Front Oncol. 2021;11:650249. https://doi.org/10.3389/fonc.2021.650249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51(12):1826–9. https://doi.org/10.2967/jnumed.110.077933.

    Article  CAS  PubMed  Google Scholar 

  70. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51(11):1813–20. https://doi.org/10.2967/jnumed.110.082263.

    Article  PubMed  Google Scholar 

  71. Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol. 2017;94:A3–A13. https://doi.org/10.1016/j.ejrad.2017.04.004.

    Article  PubMed  Google Scholar 

  72. Sherrer RL, Glaser ZA, Gordetsky JB, Nix JW, Porter KK, Rais-Bahrami S. Comparison of biparametric MRI to full multiparametric MRI for detection of clinically significant prostate cancer. Prostate Cancer Prostatic Dis. 2019;22(2):331–6. https://doi.org/10.1038/s41391-018-0107-0.

    Article  PubMed  Google Scholar 

  73. Lake ST, Greene KL, Westphalen AC, Behr SC, Zagoria R, Small EJ, et al. Optimal MRI sequences for 68Ga-PSMA-11 PET/MRI in evaluation of biochemically recurrent prostate cancer. EJNMMI Res. 2017;7(1):77. https://doi.org/10.1186/s13550-017-0327-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kranzbühler B, Müller J, Becker AS, Garcia Schüler HI, Muehlematter UJ, Fankhauser CD, et al. Detection rate and localization of prostate cancer recurrence using 68Ga-PSMA-11 PET/MRI in patients with low PSA values ≤ 0.5 ng/ml. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.118.225276.

  75. Oppenheimer DC, Weinberg EP, Hollenberg GM, Meyers SP. Multiparametric magnetic resonance imaging of recurrent prostate cancer. J Clin Imaging Sci. 2016;6:18. https://doi.org/10.4103/2156-7514.181494.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Burger IA, Müller J, Donati OF, Ferraro DA, Messerli M, Kranzbühler B, et al. 68Ga-PSMA-11 PET/MR detects local recurrence occult on mpMRI in prostate cancer patients after HIFU. J Nucl Med. 2019;60(8):1118–23. https://doi.org/10.2967/jnumed.118.221564.

    Article  CAS  PubMed  Google Scholar 

  77. Ferraro DA, Becker AS, Kranzbühler B, Mebert I, Baltensperger A, Zeimpekis KG et al. Diagnostic performance of 68Ga-PSMA-11 PET/MRI-guided biopsy in patients with suspected prostate cancer: a prospective single-center study. Eur J Nucl Med Mol Imaging. 2021. https://doi.org/10.1007/s00259-021-05261-y.

  78. Barbosa FG, von Schulthess G, Veit-Haibach P. Workflow in simultaneous PET/MRI. Semin Nucl Med. 2015;45(4):332–44. https://doi.org/10.1053/j.semnuclmed.2015.03.007.

    Article  PubMed  Google Scholar 

  79. European Association of Urology. Oncology guidelines: prostate cancer. 2018. https://uroweb.org/guideline/prostate-cancer/.

  80. Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208–16. https://doi.org/10.1016/S0140-6736(20)30314-7.

    Article  CAS  PubMed  Google Scholar 

  81. Borofsky S, George AK, Gaur S, Bernardo M, Greer MD, Mertan FV, et al. What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology. 2018;286(1):186–95. https://doi.org/10.1148/radiol.2017152877.

    Article  PubMed  Google Scholar 

  82. de Rooij M, Hamoen EH, Witjes JA, Barentsz JO, Rovers MM. Accuracy of magnetic resonance imaging for local staging of prostate cancer: a diagnostic meta-analysis. Eur Urol. 2016;70(2):233–45. https://doi.org/10.1016/j.eururo.2015.07.029.

    Article  PubMed  Google Scholar 

  83. Eiber M, Weirich G, Holzapfel K, Souvatzoglou M, Haller B, Rauscher I, et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016;70(5):829–36. https://doi.org/10.1016/j.eururo.2015.12.053.

    Article  CAS  PubMed  Google Scholar 

  84. Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate cancer-updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: a systematic review and meta-analysis. Eur Urol. 2019. https://doi.org/10.1016/j.eururo.2019.01.049.

  85. Li M, Huang Z, Yu H, Wang Y, Zhang Y, Song B. Comparison of PET/MRI with multiparametric MRI in diagnosis of primary prostate cancer: a meta-analysis. Eur J Radiol. 2019;113:225–31. https://doi.org/10.1016/j.ejrad.2019.02.028.

    Article  PubMed  Google Scholar 

  86. Muehlematter UJ, Burger IA, Becker AS, Schawkat K, Hötker AM, Reiner CS, et al. Diagnostic accuracy of multiparametric MRI versus 68Ga-PSMA-11 PET/MRI for extracapsular extension and seminal vesicle invasion in patients with prostate cancer. Radiology. 2019;293(2):350–8. https://doi.org/10.1148/radiol.2019190687.

    Article  PubMed  Google Scholar 

  87. Hövels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63(4):387–95. https://doi.org/10.1016/j.crad.2007.05.022.

    Article  PubMed  Google Scholar 

  88. Sanda MG, Cadeddu JA, Kirkby E, Chen RC, Crispino T, Fontanarosa J, et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J Urol. 2018;199(3):683–90. https://doi.org/10.1016/j.juro.2017.11.095.

    Article  PubMed  Google Scholar 

  89. Mohler JL, Antonarakis ES, Armstrong AJ, D’Amico AV, Davis BJ, Dorff T, et al. Prostate cancer, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2019;17(5):479–505. https://doi.org/10.6004/jnccn.2019.0023.

    Article  CAS  Google Scholar 

  90. Briganti A, Blute ML, Eastham JH, Graefen M, Heidenreich A, Karnes JR, et al. Pelvic lymph node dissection in prostate cancer. Eur Urol. 2009;55(6):1251–65. https://doi.org/10.1016/j.eururo.2009.03.012.

    Article  PubMed  Google Scholar 

  91. Hofman MS, Murphy DG, Williams SG, Nzenza T, Herschtal A, Lourenco RDA, et al. A prospective randomized multicentre study of the impact of gallium-68 prostate-specific membrane antigen (PSMA) PET/CT imaging for staging high-risk prostate cancer prior to curative-intent surgery or radiotherapy (proPSMA study): clinical trial protocol. BJU Int. 2018;122(5):783–93. https://doi.org/10.1111/bju.14374.

    Article  CAS  PubMed  Google Scholar 

  92. Draulans C, Everaerts W, Isebaert S, Van Bruwaene S, Gevaert T, Oyen R, et al. Development and external validation of a multiparametric magnetic resonance imaging and international society of urological pathology based add-on prediction tool to identify prostate cancer candidates for pelvic lymph node dissection. J Urol. 2020;203(4):713–8. https://doi.org/10.1097/JU.0000000000000652.

    Article  PubMed  Google Scholar 

  93. Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, et al. Clinical impact of PET/MR imaging in patients with cancer undergoing same-day PET/CT: initial experience in 134 patients—a hypothesis-generating exploratory study. Radiology. 2013;269(3):857–69. https://doi.org/10.1148/radiol.13131306.

    Article  PubMed  Google Scholar 

  94. Hope TA, Goodman JZ, Allen IE, Calais J, Fendler WP, Carroll PR. Metaanalysis of 68Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. J Nucl Med. 2019;60(6):786–93. https://doi.org/10.2967/jnumed.118.219501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G, et al. Diagnostic efficacy of 68Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node staging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol. 2016;195(5):1436–43. https://doi.org/10.1016/j.juro.2015.12.025.

    Article  PubMed  Google Scholar 

  96. Grubmüller B, Baltzer P, Hartenbach S, D’Andrea D, Helbich TH, Haug AR, et al. PSMA ligand PET/MRI for primary prostate cancer: staging performance and clinical impact. Clin Cancer Res. 2018;24:6300–7. https://doi.org/10.1158/1078-0432.CCR-18-0768.

    Article  PubMed  Google Scholar 

  97. von Eyben FE, Kairemo K. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2014;35(3):221–30. https://doi.org/10.1097/MNM.0000000000000040.

    Article  CAS  Google Scholar 

  98. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  99. Schwenck J, Rempp H, Reischl G, Kruck S, Stenzl A, Nikolaou K, et al. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur J Nucl Med Mol Imaging. 2017;44(1):92–101. https://doi.org/10.1007/s00259-016-3490-6.

    Article  CAS  PubMed  Google Scholar 

  100. Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M, et al. Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging. 2016;43(12):2114–21. https://doi.org/10.1007/s00259-016-3435-0.

    Article  CAS  PubMed  Google Scholar 

  101. Lindenberg L, Ahlman M, Turkbey B, Mena E, Choyke P. Evaluation of prostate cancer with PET/MRI. J Nucl Med. 2016;57(Suppl 3):111S–6S. https://doi.org/10.2967/jnumed.115.169763.

    Article  CAS  PubMed  Google Scholar 

  102. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol. 2017;71(4):630–42. https://doi.org/10.1016/j.eururo.2016.08.002.

    Article  PubMed  Google Scholar 

  103. Kinoshita H, Kamoto T, Nishiyama H, Nakamura E, Matsuda T, Ogawa O. Prostate specific antigen nadir determined using ultra-sensitive prostate specific antigen as a predictor of biochemical progression after radical prostatectomy in Japanese males. Int J Urol. 2007;14(10):930–4; discussion 934. https://doi.org/10.1111/j.1442-2042.2007.01858.x.

    Article  CAS  PubMed  Google Scholar 

  104. Tendulkar RD, Agrawal S, Gao T, Efstathiou JA, Pisansky TM, Michalski JM, et al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J Clin Oncol. 2016;34(30):3648–54. https://doi.org/10.1200/JCO.2016.67.9647.

    Article  PubMed  Google Scholar 

  105. Maurer T, Eiber M, Fanti S, Budäus L, Panebianco V. Imaging for prostate cancer recurrence. Eur Urol Focus. 2016;2:139–50. https://doi.org/10.1016/j.euf.2016.02.006.

    Article  PubMed  Google Scholar 

  106. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262(1):26–42. https://doi.org/10.1148/radiol.11101996.

    Article  PubMed  Google Scholar 

  107. Kitajima K, Hartman RP, Froemming AT, Hagen CE, Takahashi N, Kawashima A. Detection of local recurrence of prostate cancer after radical prostatectomy using endorectal coil MRI at 3 T: addition of DWI and dynamic contrast enhancement to T2-weighted MRI. AJR Am J Roentgenol. 2015;205(4):807–16. https://doi.org/10.2214/AJR.14.14275.

    Article  PubMed  Google Scholar 

  108. Robertson NL, Sala E, Benz M, Landa J, Scardino P, Scher HI, et al. Combined whole body and multiparametric prostate magnetic resonance imaging as a 1-Step approach to the simultaneous assessment of local recurrence and metastatic disease after radical prostatectomy. J Urol. 2017;198(1):65–70. https://doi.org/10.1016/j.juro.2017.02.071.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sawicki LM, Kirchner J, Buddensieck C, Antke C, Ullrich T, Schimmöller L, et al. Prospective comparison of whole-body MRI and 68Ga-PSMA PET/CT for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2019;46(7):1542–50. https://doi.org/10.1007/s00259-019-04308-5.

    Article  CAS  PubMed  Google Scholar 

  110. Nanni C, Zanoni L, Pultrone C, Schiavina R, Brunocilla E, Lodi F, et al. (18)F-FACBC (anti1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid) versus (11)C-choline PET/CT in prostate cancer relapse: results of a prospective trial. Eur J Nucl Med Mol Imaging. 2016;43(9):1601–10. https://doi.org/10.1007/s00259-016-3329-1.

    Article  CAS  PubMed  Google Scholar 

  111. Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite experience of the safety, detection rate and diagnostic performance of fluciclovine (18 F) positron emission tomography/computerized tomography imaging in the staging of biochemically recurrent prostate cancer. J Urol. 2017;197(3):676–83. https://doi.org/10.1016/j.juro.2016.09.117.

    Article  PubMed  Google Scholar 

  112. Calais J, Ceci F, Eiber M, Hope TA, Hofman MS, Rischpler C, et al. 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol. 2019. https://doi.org/10.1016/S1470-2045(19)30415-2.

  113. Treglia G, Pereira Mestre R, Ferrari M, Bosetti DG, Pascale M, Oikonomou E, et al. Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: a meta-analysis. Am J Nucl Med Mol Imaging. 2019;9(2):127–39.

    PubMed  PubMed Central  Google Scholar 

  114. Treglia G, Annunziata S, Pizzuto DA, Giovanella L, Prior JO, Ceriani L. Detection rate of 18F-labeled PSMA PET/CT in biochemical recurrent prostate cancer: a systematic review and a meta-analysis. Cancer. 2019;11(5):710. https://doi.org/10.3390/cancers11050710.

    Article  CAS  Google Scholar 

  115. Zacho HD, Nielsen JB, Afshar-Oromieh A, Haberkorn U, deSouza N, De Paepe K, et al. Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(11):1884–97. https://doi.org/10.1007/s00259-018-4058-4.

    Article  CAS  PubMed  Google Scholar 

  116. Guler OC, Engels B, Onal C, Everaert H, Van den Begin R, Gevaert T, et al. The feasibility of prostate-specific membrane antigen positron emission tomography (PSMA PET/CT)-guided radiotherapy in oligometastatic prostate cancer patients. Clin Transl Oncol. 2018;20(4):484–90. https://doi.org/10.1007/s12094-017-1736-9.

    Article  CAS  PubMed  Google Scholar 

  117. Bräuer A, Rahbar K, Konnert J, Bögemann M, Stegger L. Diagnostic value of additional 68Ga-PSMA-PET before 223Ra-dichloride therapy in patients with metastatic prostate carcinoma. Nuklearmedizin. 2017;56(1):14–22. https://doi.org/10.3413/Nukmed-0846-16-09.

    Article  PubMed  Google Scholar 

  118. Sathekge M, Bruchertseifer F, Vorster M, Lawal I, Knoesen O, Mahapane J, et al. Predictors of overall and disease free survival in metastatic castration-resistant prostate cancer patients receiving 225Ac-PSMA-617 radioligand therapy. J Nucl Med. 2019. https://doi.org/10.2967/jnumed.119.229229.

  119. https://www.nuklearmedizin.de/docs/Lu-177-PSMA_160224.pdf.

  120. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(1):122S–50S. https://doi.org/10.2967/jnumed.108.057307.

    Article  CAS  PubMed  Google Scholar 

  121. Kranzbühler B, Salemi S, Umbricht CA, Müller C, Burger IA, Sulser T, et al. Pharmacological upregulation of prostate-specific membrane antigen (PSMA) expression in prostate cancer cells. Prostate. 2018;78(10):758–65. https://doi.org/10.1002/pros.23522.

    Article  CAS  PubMed  Google Scholar 

  122. Vargas HA, Wassberg C, Fox JJ, Wibmer A, Goldman DA, Kuk D, et al. Bone metastases in castration-resistant prostate cancer: associations between morphologic CT patterns, glycolytic activity, and androgen receptor expression on PET and overall survival. Radiology. 2014;271(1):220–9. https://doi.org/10.1148/radiol.13130625.

    Article  PubMed  Google Scholar 

Further Reading

  • EAU guidelines.

    Google Scholar 

  • Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2017;44(6):1014–24. https://doi.org/10.1007/s00259-017-3670-z.

    Article  PubMed  Google Scholar 

  • Fütterer, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68:6.

    Article  Google Scholar 

  • Hofman MS, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208–16.

    Article  CAS  PubMed  Google Scholar 

  • Kratochwil C, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging. 2019;44(6):1014–24. https://doi.org/10.1007/s00259-017-3670-z.

    Article  Google Scholar 

  • Rauscher I, et al. 68Ga-PSMA ligand PET/CT in patients with prostate cancer: how we review and report. Cancer Imaging. 2016;16:14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene A. Burger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burger, I.A., Ferraro, D.A., Friebe, M., Popescu, C.E. (2023). Prostate Cancer. In: Neri, E., Erba, P.A. (eds) Multimodality Imaging and Intervention in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-031-28524-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28524-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28523-3

  • Online ISBN: 978-3-031-28524-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics