Skip to main content

Molecular Diagnostics of Soil-Borne and Foliar Diseases of Mulberry: Present Trends and Future Perspective

  • Chapter
  • First Online:
The Mulberry Genome

Abstract

Many pathogen species produce diseases that cause major yield and economic losses in the sericulture industry. Among them, soil-borne and foliar diseases are more damaging leading to poor quality of leaf production, which is an important component for silkworm feeding. Monitoring of such diseases at the earlier stage leads to the reduction and spreading of the diseases. Apart from the conventional characterization and detection, molecular diagnostic tools are less expensive, more reliable, and user-friendly. With the revolution of next-generation sequencing technologies, development of diagnostic markers for diagnosing diseases has been rapidly improved and applied to many crops. In mulberry, very few such diagnostic tools have been employed and hence this chapter summarizes a brief introduction to soil-borne and foliar diseases of mulberry and the latest molecular diagnostics methods that can be applied for the detection of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfattah A, Wisniewski M, Schena L, Tack AJ (2021) Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ Microbiol 23(4):2199–2214

    Article  CAS  PubMed  Google Scholar 

  • Abe A, Oda Y, Asano K, Sone T (2006) The molecular phylogeny of the genus Rhizopus based on rDNA sequences. Biosci Biotechnol Biochem 70:2387–2393. https://doi.org/10.1271/bbb.60101

    Article  CAS  PubMed  Google Scholar 

  • Abe A, Asano K, Sone T (2010) A molecular phylogeny-based taxonomy of the genus Rhizopus. Biosci Biotechnol Biochem 74:1325–1331. https://doi.org/10.1271/bbb.90718

    Article  CAS  PubMed  Google Scholar 

  • Amreen A, Arunakumar GS, Pooja D, Gnanesh BN, Yadav VK, Sivaprasad V (2017) Efficacy of botanical extracts against Fusarium solani and F. oxysporum causing dry root rot of mulberry. Indian J Seric 56(1–2):48–54

    Google Scholar 

  • Angelini RMDM, Romanazzi G, Pollastro S, Rotolo C, Faretra F, Landi L (2019) New high-quality draft genome of the brown rot fungal pathogen Monilinia fructicola. Genome Biol Evol 11(10):2850–2855. https://doi.org/10.1093/gbe/evz207

    Article  CAS  Google Scholar 

  • Aoki K (1971) On the root rot of mulberry in Thailand. Bull Thai Seri Cen 1:13–17

    Google Scholar 

  • Aragona M, Haegi A, Valente MT, Riccioni L, Orzali L, Vitale S, Luongo L, Infantino A (2022) New-generation sequencing technology in diagnosis of fungal plant pathogens: a dream comes true? J Fungi 8(7):737

    Article  CAS  Google Scholar 

  • Arunakumar GS, Gnanesh BN, Pooja D, Sivaprasad V (2019a) First report of Setosphaeria rostrata causing leaf spot on mulberry in India. Plant Dis. https://doi.org/10.1094/PDIS-08-18-1424-PDN

    Article  Google Scholar 

  • Arunakumar GS, Gnanesh BN, Supriya M, Sivaprasad V (2019b) First report of Nigrospora sphaerica causing shot hole disease on mulberry in India. Plant Dis 103(7):1783. https://doi.org/10.1094/PDIS-12-18-2204-PDN

    Article  Google Scholar 

  • Arunakumar GS, Gnanesh BN, Manojkumar HB, Doss SG, Mogili T, Sivaprasad V, Tewary P (2021) Genetic diversity, identification, and utilization of novel genetic resources for resistance to meloidogyne incognita in mulberry (Morus spp.). Plant Dis 105(10):2919–2928

    Google Scholar 

  • Arunakumar GS, Revanna S, Kumar V, Yadav VK, Sivaprasad V (2018) Studies on scanning electron microscopy and fungal association with root knot nematode in major mulberry growing areas of Southern Karnataka. J Entomol Zool Stud 6:511–518

    Google Scholar 

  • Arunakumar GS, Gnanesh BN (2023) Evaluation of artificial inoculation methods to determine resistance reaction to dry root rot and black root rot disease in mulberry (Morus spp.). Arch Phytopathol Plant Prot 56(1), 49–65. https://doi.org/10.1080/03235408.2023.2170692

  • Arzanlou M, Dokhanchi H (2013) Morphological and molecular characterization of Diplodiaseriata, the causal agent of canker and twig dieback disease on mulberry in Iran. Arch Phytopathol Plant Prot 46(6):682–694. https://doi.org/10.1080/03235408.2012.749703

    Article  CAS  Google Scholar 

  • Aslam S, Tahir A, Aslam MF, Alam MW, Shedayi AA, Sadia S (2017) Recent advances in molecular techniques for the identifification of phytopathogenic fungi—a mini review. J Plant Interact 12(1):493–504. https://doi.org/10.1080/17429145.2017.1397205

    Article  Google Scholar 

  • Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J (2004) Genetic diversity and relationships in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet 5(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  • Babu AM, Kumar V, Govindaiah (2002) Surface ultrastructural studies on the infection process of Pseudocercospora mori causing grey leaf spot disease in mulberry. Mycol Res 106:938–945. https://doi.org/10.1017/S095375620200624X

  • Babu BK, Saxena AK, Srivastava AK, Arora DK (2007) Identification and detection of Macrophomina phaseolina by using species-specific oligonucleotide primers and probe. Mycologia 99:797–803

    Article  CAS  Google Scholar 

  • Babu BK, Reddy SS, Yadav MK, Sukumar M, Mishra V, Saxena AK et al (2010) Genetic diversity of Macrophomina phaseolina isolates from certain agro-climatic regions of India by using RAPD markers. Indian J Microbiol 50:199–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basandrai AK, Pandey AK, Somta P, Basandrai D (2021) Macrophomina phaseolina–host interface: Insights into an emerging dry root rot pathogen of mungbean and urdbean, and its mitigation strategies. Plant Pathol 70(6):1263–1275

    Article  Google Scholar 

  • Bautista-Cruz MA, Almaguer-Vargas G, Leyva-Mir SG, Colinas-León MT, Correia KC, Camacho-Tapia M, Robles-Yerena L, Michereff SJ, Tovar-Pedraza JM (2019) Phylogeny, distribution and pathogenicity of Lasiodiplodia species associated with cankers and dieback symptoms of Persian lime in Mexico. Plant Dis 103(6):1156–1165

    Article  CAS  PubMed  Google Scholar 

  • Becherer L, Borst N, Bakheit M, Frischmann S, Zengerle R, von Stetten F (2020) Loop-mediated isothermal amplifification (LAMP)—review and classification of methods for sequence-specifific detection. Anal Methods 12(6):717–746. https://doi.org/10.1039/C9AY02246E

    Article  Google Scholar 

  • Belisario A, Forti E, Corazza L, Kestsren HAV (1999) First report of Myrothecium verrucaria from muskmelon seeds. Plant Pathol 83:589

    CAS  Google Scholar 

  • Bessey EA (1911) Root-knot and its control (No. 217). US Government Printing Office

    Google Scholar 

  • Bhat AI, Rao GP (2020) Rolling circle amplifification (RCA). In: Characterization of plant viruses—methods and protocols. Springer, Humana, New York, pp 377–382. https://doi.org/10.1007/978-1-0716-0334-5_39

  • Bridge P, Pearce D, Rivera A, Rutherford MA (1997) VNTR derived oligonucleotides as PCR primers for population studies in filamentous fungi. Lett Appl Microbiol 24:426–430

    Article  CAS  Google Scholar 

  • Bridge J, Plowright RA, Peng D (2005) Nematode parasites of rice. Plant Parasitic Nematodes Subtrop Trop Agric 2:87–130

    Article  Google Scholar 

  • Bussaban B, Kodchasee P, Apinyanuwat S, Kosawang C, Jonglaekha N (2017) First report of Curvularia lunata causing leaf blight on mulberry (Morus sp.) in Thailand. Plant Dis 101(11):1951–1951

    Google Scholar 

  • Byrne J, Raymond AC (2007) A pocket guide for IPM Scouting in herbaceous perennials. MSU Extension (publication E-2981)

    Google Scholar 

  • Caetano-Anolles D (2013) Polymerase chain reaction. In: Maloy S, Hughes K (eds) Brenner’s encyclopedia of genetics. Academic Press, San Diego, pp 392–395. https://doi.org/10.1016/B978-0-12-374984-0.01186-4

  • Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, Almeida Engler J, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113

    Article  CAS  PubMed  Google Scholar 

  • Capote N, Pastrana AM, Aguado A, Sánchez-Torres P (2012) Molecular tools for detection of plant pathogenic fungi and fungicide resistance. Plant Pathol 151–202

    Google Scholar 

  • Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A et al (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68:229–238. https://doi.org/10.1111/ppa.12957

    Article  CAS  Google Scholar 

  • Chander Y, Koelbl J, Puckett J, Moser MJ, Klingele AJ, Liles MR et al (2014) A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplifification (LAMP). Front Microbiol 5:395. https://doi.org/10.3389/fmicb.2014.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase AR (1992) Myrothecium leaf spot. Compendium of ornamental foliage. Plant Disease. APS press, Minnesota, pp 35–37

    Google Scholar 

  • Chen SF, Morgan D, Beede RH, Michailides TJ (2013) First report of Lasiodiplodia theobromae associated with stem canker of almond in California. Plant Dis 97(7):994–994

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Xiang TT, Liu XY, Wang WH, Zhang BL, Liu J, Zhou W, Wan YJ, Chen G, Zhu HS (2018) First report of Nigrospora sphaerica causing shot hole disease on mulberry in China. Plant Dis 102(1):245

    Article  Google Scholar 

  • Chen J, Zhu Z, Fu Y, Cheng J, Xie J, Lin Y (2021) Identification of Lasiodiplodia pseudotheobromae causing fruit rot of citrus in China. Plants 10(2):202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Tang X, Gao C, Li Z, Chen J, Guo L et al (2020) Molecular diagnostics and pathogenesis of fungal pathogens on bast fiber crops. Pathogens 9(3):223. https://doi.org/10.3390/pathogens9030223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary P, Singh BN, Chakdar H, Saxena AK (2021) DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 37(3):1–20

    Article  Google Scholar 

  • Choudhary P, Goswami SK, Chakdar H, Verma S, Thapa S, Srivastava AK, Saxena AK (2022) Colorimetric loop-mediated isothermal amplification assay for detection and ecological monitoring of Sarocladium oryzae, an important seed-borne pathogen of rice. Front Plant Sci 13

    Google Scholar 

  • Chowdary NB (2006) Studies on root rot disease of mulberry (Morus spp.) and its management with special reference to the antagonistic microbes. Ph.D. Thesis, University of Mysore, Mysore, India

    Google Scholar 

  • Chowdary NB, Govindaiah (2009) Leaf yield loss assessment due to Macrophomina root rot disease in mulberry gardens of south India. Arch Phytopath Pl Prot 42(11):1055–1058

    Google Scholar 

  • Cortés-Maldonado L, Marcial-Quino J, Gomez-Manzo S, Fierro F, Tomasini A (2020) A method for the extraction of high quality fungal RNA suitable for RNA-seq. J Microbiol Methods 170:105855. https://doi.org/10.1016/j.mimet.2020.105855

    Article  CAS  PubMed  Google Scholar 

  • Corthell JT (2014) In Situ hybridization. In: Basic molecular protocols in neuroscience: tips, tricks, and pitfalls. Academic Press, San Diego, pp 105–111. https://doi.org/10.1016/B978-0-12-801461-5.00011-3

  • Crous PW, Groenewald JZ (2005) Hosts, species and genotypes: opinions versus data. Australas Plant Pathol 34(4):463–470

    Article  Google Scholar 

  • Cruywagen EM, Slippers B, Roux J, Wingfield MJ (2017) Phylogenetic species recognition and hybridization in Lasiodiplodia: a case study on species from baobabs. Fungal Biol 121:420–436

    Article  PubMed  Google Scholar 

  • Cui C, Shu W, Li P (2016) Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Front Cell Dev Biol. 4(89):89. https://doi.org/10.3389/fcell.2016.00089

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandin SB, Jayaswal J, Giridhar K (2000) Handbook of sericulture technologies. Central Silk Board, Bangalore, p 259

    Google Scholar 

  • Dandin SB, Jayaswal J, Giridhar K (2003) Mulberry cultivation. In: Dandin SB, Jayaswal J, Giridhar K (eds) Handbook of sericulture technologies. Central Silk Board, Bangalore, pp 35–55

    Google Scholar 

  • Davari M, van Diepeningen AD, Babai-Ahari A, Arzanlou M, Najafzadeh MJ, van der Lee TA et al (2012) Rapid identifification of Fusarium graminearum species using Rolling circle amplifification (RCA). J Microbiol Methods 89(1):63–70. https://doi.org/10.1016/j.mimet.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  • de Silva NI, Phillips AJ, Liu JK, Lumyong S, Hyde KD (2019) Phylogeny and morphology of Lasiodiplodia species associated with Magnolia forest plants. Sci Rep 9(1):1–11

    Google Scholar 

  • Devi ML, Kumari MV (2014) Prevalence of Meloidogyne species in different crops of Indian sub continent—a review. Int J Adv Res 2(9):530–537

    Google Scholar 

  • Dolatabadi S, De Hoog GS, Meis JF, Walther G (2014a) Species boundaries and nomenclature of Rhizopus arrhizus (syn. R. oryzae). Mycoses 57:108–127

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadi S, Walther G, Van Den Ende AG, De Hoog GS (2014b) Diversity and delimitation of Rhizopus microsporus. Fungal Divers 64:145–163

    Article  Google Scholar 

  • Dong H, Wang C, Xiong Y, Lu H, Ju H, Zhang X (2013) Highly sensitive and selective chemiluminescent imaging for DNA detection by ligation-mediated rolling circle amplifified synthesis of DNAzyme. Biosens Bioelectron 41:348–353. https://doi.org/10.1016/j.bios.2012.08.050

    Article  CAS  PubMed  Google Scholar 

  • Ellison MA, McMahon MB, Bonde MR, Palmer CL, Luster DG (2016) In situ hybridization for the detection of rust fungi in paraffifin embedded plant tissue sections. Plant Methods 12:37. https://doi.org/10.1186/s13007-016-0137-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ertian H (2003) Protection of mulberry plants (Translate from Chinese). Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India

    Google Scholar 

  • Espindola A, Schneider W, Hoyt PR, Marek SM, Garzon C (2015) A new approach for detecting fungal and oomycete plant pathogens in next generation sequencing metagenome data utilizing electronic probes. Int J Data Min Bioinform 12:115–128. https://doi.org/10.1504/IJDMB.2015.069422

    Article  PubMed  Google Scholar 

  • Fang SQ, Wu FA, Chen MS (2011) Isolation and primary identification of the pathogen causing root rot disease of adult mulberry trees. Sci Sericult 37:785–791

    CAS  Google Scholar 

  • Fang Y, Ramasamy RP (2015) Current and prospective methods for plant disease detection. Biosensors 5:537–561. https://doi.org/10.3390/bios5030537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci U S A 92(10):4641–4645. https://doi.org/10.1073/pnas.92.10.4641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francois P, Tangomo M, Hibbs J, Bonetti EJ, Boehme CC, Notomi T et al (2011) Robustness of a loop-mediated isothermal amplifification reaction for diagnostic applications. FEMS Immunol Med Microbiol 62:41–48. https://doi.org/10.1111/j.1574-695X.2011.00785.x

    Article  CAS  PubMed  Google Scholar 

  • Frickmann H, Zautner AE, Moter A, Kikhney J, Hagen RM, Stender H et al (2017) Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol 43(3):263–293. https://doi.org/10.3109/1040841X.2016.1169990

    Article  CAS  PubMed  Google Scholar 

  • Fuhlbohm J, Ryley MJ, Aitken EAB (2013) Infection of mungbean seed by Macrophomina phaseolina is more likely to result from localized pod infection than from systemic plant infection. Plant Pathol 62:1271–1284

    Article  CAS  Google Scholar 

  • Gangwar SK, Thangavelu K (1991) Occurrence of mulberry diseases in Tamilnadu. Indian Phytopath 44(4):545–549

    Google Scholar 

  • Gani M, Chouhan S, Bharath K, Arif HB, Mir NA, Ghosh MK (2017) Incidence, distribution and management of root rot disease of mulberry in sericulture practicing areas of Kashmir, India. Sericologia 57(4):122–132

    Google Scholar 

  • Gao H, Zhang K, Teng X, Li J (2019) Rolling circling amplifification for a single cell analysis and in situ sequencing. Trends Anal Chem 121:115700. https://doi.org/10.1016/j.trac.2019.115700

    Article  CAS  Google Scholar 

  • Gautam R, Singh SK, Sharma V (2014) RAPD and Nuclear rDNA ITS polymorphism within Macrophomina phaseolina isolated from arid legumes of western Rajasthan. Proc Nat Acad Sci Sec B Biol Sci 84:171–181

    Article  CAS  Google Scholar 

  • Ghosh L, Neela F, Mahal M, Khatun M, Ali M (2012) Effect of various factors on the development of leaf spot disease in mulberry. J Environ Sci Nat Resour 5(1):205–209. https://doi.org/10.3329/jesnr.v5i1.11583

    Article  Google Scholar 

  • Gnanaprakash S, Madhumitha B, Jayapradha C, Devipriya S, Kalaiarasan P (2016) Identification of resistance in mulberry, Morus spp. for root knot nematode, Meloidogyne incognita. Int J Plant Sci 11(2):262–264

    Google Scholar 

  • Gnanesh BN, Tejaswi A, Arunakumar GS, Supriya M, Manojkumar HB, Tewary P (2021) Molecular phylogeny, identification and pathogenicity of Rhizopus oryzae associated with root rot of mulberry in India. J Appl Microbiol. https://doi.org/10.1111/jam.14959

    Article  PubMed  Google Scholar 

  • Gnanesh BN, Arunakumar GS, Tejaswi A, Supriya M, Manojkumar HB, Devi SS (2022) Characterization and pathogenicity of Lasiodiplodia theobromae causing black root rot and identification of novel sources of resistance in mulberry collections. Plant Pathol J 38(4):272–286. https://doi.org/10.5423/PPJ.OA.01.2022.0005

  • Goo N, Kim D (2016) Rolling circle amplifification as isothermal gene amplifification in molecular diagnostics. Biochip J 10:262–271. https://doi.org/10.1007/s13206-016-0402-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin P, Kirkpatrick B, Duniway J (1989) Cloned DNA probes for identification of Phytophthora parasitica. Phytopathology 79:716–721

    Article  CAS  Google Scholar 

  • Govindaiah KS, Kumar P (1991) Diseases and pests of mulberry and their control. Central Sericultural Research and Training Institute, Sriampura, Mysore, 45

    Google Scholar 

  • Govindaiah, Gupta VP (2005) Foliar disease of mulberry and their management. In: Sampath J (ed) Mulberry crop protection. Central Silk Board, Bangalore, India, pp 145–177

    Google Scholar 

  • Govindaiah, Sharma DD, Bajpai AK, Datta RK (1993) Identification of races of Meloidogyne incognita, infesting mulberry. Indian J Seric 32:91–93

    Google Scholar 

  • Griffiths MW (2014) Nucleic acid–based assays: Overview. In: Batt CA, Tortorello ML (eds) Encyclopedia of food microbiology. Academic Press, Oxford, pp 990–998. https://doi.org/10.1016/B978-0-12-384730-0.00243-3

  • Grunwald NJ, McDonald BM, Milgroom MG (2016) Population genomics of fungal and oomycete pathogens. Annu Rev Phytopathol 54:323–346

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Yan W, Liu L, Wang S, Zhang X, Lyu M (2018) Research progress on rolling circle amplifification (RCA)-based biomedical sensing. Pharmaceuticals (basel Switzerland) 11(2):35. https://doi.org/10.3390/ph11020035

    Article  CAS  PubMed  Google Scholar 

  • Guan XY, Guo JC, Shen P, Yang LT, Zhang DB (2010) Visual and rapid detection of two genetically modifified soybean events using loopmediated isothermal amplifification method. Food Anal Methods 3:313–320. https://doi.org/10.1007/s12161-010-9132-x

    Article  Google Scholar 

  • Gunasekhar V, Philip T, Govindaiah, Sharma DD, Nagaraj B, Datta RK (1994) Seasonal occurrence of foliar fungal and bacterial diseases of mulberry in South India. Indian Phytopath 47(1):72–76

    Google Scholar 

  • Hadidi A, Flores R, Candresse T, Barba M (2016) Next-generation sequencing and genome editing in plant virology. Front Microbiol 7:1325. https://doi.org/10.3389/fmicb.2016.01325

    Article  PubMed  PubMed Central  Google Scholar 

  • Hariharan G, Prasannath K (2021) Recent advances in molecular diagnostics of fungal plant pathogens: a mini review. Front Cell Infect Microbiol 10:600234

    Article  PubMed  PubMed Central  Google Scholar 

  • Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH (1997) Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques 23:504–511

    Article  CAS  PubMed  Google Scholar 

  • Heo S, Kim HR, Lee HJ (2019) Development of a quantitative real-time nucleic acid sequence based amplifification (NASBA) assay for early detection of apple scar skin viroid. Plant Pathol J 35(2):164–171. https://doi.org/10.5423/PPJ.OA.10.2018.0206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo JI, Oh JY, Lee DH (2021) First report of leaf spot disease caused by Cladosporium pseudocladosporioides on Morus alba in South Korea. J for Environ Sci 37(4):338–340

    Google Scholar 

  • Hijri M (2009) The use of fluorescent in situ hybridization in plant fungal identifification and genotyping. Methods Mol Biol 508:131–145. https://doi.org/10.1007/978-1-59745-062-1_11

    Article  CAS  PubMed  Google Scholar 

  • Hong SK, Kim WG, Sung GB, Choi HW, Lee YK, Shim HS, Lee SY (2011) Occurrence of leaf spot on mulberry caused by Phloeospora maculans in Korea. Plant Pathol J 27(2):193–193

    Article  Google Scholar 

  • Huang Y, Meng L, Liu J, Wang C (2019) First report of Botryosphaeria dothidea causing shoot canker on mulberry in China. Plant Dis 103(7):1788

    Article  Google Scholar 

  • Jensen E (2014) Technical review: In Situ hybridization. Anat Rec 297(8):1349–1353. https://doi.org/10.1002/ar.22944

    Article  Google Scholar 

  • Johnston-Monje D, Lopez Mejia J (2020) Botanical microbiomes on the cheap: Inexpensive molecular fingerprinting methods to study plant-associated communities of bacteria and fungi. Appl Plant Sci 8(4):e11334

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczmarek AM, King KM, West JS, Stevens M, Sparkes D, Dickinson M (2019) A loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of airborne inoculum of Uromyces betae (sugar beet rust). Plant Dis 103(3):417–421. https://doi.org/10.1094/PDIS-02-18-0337-RE

    Article  CAS  PubMed  Google Scholar 

  • Kieser RE, Budowle B (2020) Rolling circle amplifification: a (random) primer on the enrichment of an infifinite linear DNA template. Wires Forensic Sci. 2:e1359. https://doi.org/10.1002/wfs2.1359

    Article  Google Scholar 

  • Kim DK, Bae DW, Lee SC, Han KS, Kim HK (2003) Detection of Myrothecium leaf spot, a new disease of watermelon. Plant Pathol J 19:200–202

    Article  Google Scholar 

  • Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36(1):138–151

    Article  PubMed  Google Scholar 

  • Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015(11):951–969. https://doi.org/10.1101/pdb.top084970

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulabhusan PK, Tripathi A, Kant K (2022) Gold nanoparticles and plant pathogens: an overview and prospective for biosensing in forestry. Sensors 22(3):1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Akhtar J, Kandan A, Kumar S, Batra R, Dubey SC (2016) Advance detection techniques of phytopathogenic fungi: Current trends and future perspectives. In: Current trends in plant disease diagnostics and management practices, pp 265–298

    Google Scholar 

  • Kumar S, Kashyap PL, Mahapatra S, Jasrotia P, Singh GP (2021) New and emerging technologies for detecting Magnaporthe oryzae causing blast disease in crop plants. Crop Prot 1(143):105473

    Article  Google Scholar 

  • Le DT, Vu NT (2017) Progress of loop-mediated isothermal amplifification technique in molecular diagnosis of plant diseases. Appl Biol Chem 60:169–180. https://doi.org/10.1007/s13765-017-0267-y

    Article  CAS  Google Scholar 

  • Leroch M, Kretschmer M, Hahn M (2011) Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J Phytopathol 159:63–65

    Article  CAS  Google Scholar 

  • Li S, Cullen D, Hjort M, Spear R, Andrews JH (1996) Development of an oligonucleotide probe for Aureobasidium pullulans based on the small-subunit rRNA gene. Appl Environ Microbiol 62:1514–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q (2019) Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants 5(8):856–866

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Jiang X, Yi J, Wang X, Zuo R, Jiang Z et al (2018) Molecular identification of Neofabraea species associated with bull’s-eye rot on apple using rolling-circle amplifification of partial EF-1a sequence. Can J Microbiol 64(1):57–68. https://doi.org/10.1139/cjm-2017-0448

    Article  CAS  PubMed  Google Scholar 

  • Luchi N, Ghelardini L, Belbahri L, Quartier M, Santini A (2013) Rapid detection of Ceratocystis platani inoculum by quantitative real-time PCR assay. Appl Environ Microbiol 79(17):5394–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukumbuzya M, Schmid M, Pjevac P, Daims H (2019) A multicolor fluorescence in situ hybridization approach using an extended set of fluorophores to visualize microorganisms. Front Microbiol 10:1383. https://doi.org/10.3389/fmicb.2019.01383

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv Z, He Z, Yuan J, Hao L, Song Z, Chen G, Ren J, He N (2022) Investigation and rapid detection of fungal pathogens causing mulberry sclerotial disease in south-west China. Plant Pathol 71(3):684–695

    Article  CAS  Google Scholar 

  • Ma Z, Michailides TJ (2007) Approaches for eliminating PCR inhibitors and designing PCR primers for the detection of phytopathogenic fungi. Crop Prot 26:145–161. https://doi.org/10.1016/j.cropro.2006.04.014

    Article  CAS  Google Scholar 

  • Maji MD, Qadri SMH, Pal SC (1998) Xanthomonas campestris pv. mori, a new bacterial pathogen of mulberry. Sericologia 38:519–522

    Google Scholar 

  • Maji MD, Kadri SMH, Pal SC (2000) Control of bacterial leaf spot of mulberry caused by Xanthomonas campestris pv. mori. Ind J Sericult 38:8–83

    Google Scholar 

  • Malapi-Wight M, Salgado-Salazar C, Demers JE, Clement DL, Rane KK, Crouch JA (2016) Sarcococca blight: use of whole-genome sequencing for fungal plant disease diagnosis. Plant Dis 100:1093–1100. https://doi.org/10.1094/PDIS-10-15-1159-RE

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna B, Magadum SB, Gunashekar VA (2010) A survey on incidence of root diseases of mulberry. Kar J Agric Sci 23:655

    Google Scholar 

  • Manimegalai S, Chandramohan N (2007) Leaf quality of mildew affected leaves and their effect on mortality and economic characters of silkworm, Bombyx mori L. Sericologia 47:87–92

    Google Scholar 

  • Manojkumar HB, Arunakumar GS, Gnanesh BN (2022) Molecular characterization of mulberry root-knot nematode, Caused by Meloidogyne incognita using modified DNA isolation protocol. Int J Curr Microbiol App Sci 11(07):85–98

    Google Scholar 

  • Marques MW, Lima NB, de Morais MA, Barbosa MAG, Souza BO, Michereff SJ, Phillips AJ, Camara MP (2013) Species of Lasiodiplodia associated with mango in Brazil. Fungal Divers 61(1):181–193

    Article  Google Scholar 

  • Midorikawa GEO, Miller RNG, Bittencourt DM, de C (2018) Molecular identification and detection of foodborne and feedborne mycotoxigenic fungi. In: El Sheikha AF, Levin R, Xu J (eds) Molecular techniques in food biology. John Wiley & Sons Ltd, USA, pp 385–407. https://doi.org/10.1002/9781119374633.ch17

  • Mills SD, Förster H, Coffey MD (1991) Taxonomic structure of Phytophthora cryptogea and P. drechsleri based on isozyme and mitochondrial DNA analyses. Mycol Res 95:31–48

    Article  CAS  Google Scholar 

  • Milner H, Ji P, Sabula M, Wu T (2019) Quantitative polymerase chain reaction (Q-PCR) and flfluorescent in situ hybridization (FISH) detection of soilborne pathogen Sclerotium rolfsii. Appl Soil Ecol 1362019:86–92. https://doi.org/10.1016/j.apsoil.2019.01.002

    Article  Google Scholar 

  • Minamizawa K (1997) Moriculture: the science of mulberry cultivation. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  • Monir S, Mandal NC, Pappachan A, Dutta SK (2017) Study on feeding of powdery mildew infected mulberry leaves in silkworm rearing and its bioassay. Biosci Discov 8(1):20–23

    Google Scholar 

  • Mori Y, Notomi T (2009) Loop-mediated isothermal amplifification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69. https://doi.org/10.1007/s10156-009-0669-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112. https://doi.org/10.1016/S0167-7012(00)00152-4

    Article  CAS  PubMed  Google Scholar 

  • Narayanan ES, Kashivishwanathan K, Iyengar MNS (1966) A note on the occurrence of root-knot nematode, Meloidogyne incognita (Kofoid and Whitc) in local mulberry. Indian J Seric 5:33–34

    Google Scholar 

  • Narayanasamy P (2011) Diagnosis of fungal diseases of plants. In: Microbial plant pathogens-detection and disease diagnosis. Springer, Dordrecht, pp 273–284. https://doi.org/10.1007/978-90-481-9735-4_5

  • Nelson EB (2004) Biological control of oomycetes and fungal pathogens. Encyclopedia of plant and crop science. Marcel Dekker, Inc, pp 137–140

    Google Scholar 

  • Noamani MKR, Mukherjee PK, Krishnaswami S (1970) Studies on the effect of feeding multivoltine silkworm (Bombyx mori) larvae with mildew effected leaves. Indian J Seric 9:49–52

    Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63. https://doi.org/10.1093/nar/28.12e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paes-Takahashi VDS, Soares PLM, Carneiro FA, Ferreira RJ, Almeida EJD, Santos JMD (2015) Detecção de Meloidogyne enterolobii em mudas de amoreira (Morus nigra L.). Ciência Rural 45:757–759

    Article  Google Scholar 

  • Pandey AK, Bansadrai AK (2021) Will Macrophomina phaseolina spread in legumes due to climate change? A critical review of current knowledge. J Plant Dis Prot 128:9–18

    Article  Google Scholar 

  • Pane A, Granata G, Cacciola SO, Puglisi I, Evoli M, Aloi F, La Spada F, Magnano di San Lio G, Zambounis A (2017) First report of root rot of white mulberry caused by simultaneous infections of Phytophthora megasperma and P. multivora in Italy. Plant Dis 101(1):260

    Google Scholar 

  • Panno S, Ruiz-Ruiz S, Caruso AG, Alfaro-Fernandez A, Font San Ambrosio MI, Davino S (2019) Real-time reverse transcription polymerase chain reaction development for rapid detection of Tomato brown rugose fruit virus and comparison with other techniques. Peer J 7:e7928. https://doi.org/10.7717/peerj.7928

  • Panno S, Matic S, Tiberini A, Caruso AG, Bella P, Torta L et al (2020) Loop mediated isothermal amplification: principles and applications in plant virology. Plants 9(4):461. https://doi.org/10.3390/plants9040461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappachan A, Rahul K, Chakravarty D, Sivaprasad V (2019) Phylogenetic analysis of Paramyrothecium roridum causing brown leaf spot of mulberry. Int J Curr Microbiol App Sci 8(03):1393–1399. https://doi.org/10.20546/ijcmas.2019.803.163

  • Pappachan A, Rahul K, Irene L, Sivaprasad V (2020) Molecular identification of fungi associated with mulberry root rot disease in Eastern and North Eastern India. J Crop Weed 16(1):180–185

    Article  Google Scholar 

  • Patil BL (2018) Genes, genetics and transgenics for virus resistance in plants. Caister Academic Press, Norfolk, UK

    Google Scholar 

  • Peris NW, Lucas N, Miriam KG, Theophillus MM (2012) Field evaluation of mulberry accessions for susceptibility to foliar diseases in Uasin-Gishu district, Kenya. Afr J Biotechnol 11(15):3569–3574

    Google Scholar 

  • Philip T, Govindaiah SK, NishithaNaik V (1991) Anatomical nature of resistance in mulberry genotypes against Ceroteliumfici causing leaf rust. Indian Phytopath 44(2):249–251

    Google Scholar 

  • Phillip T, Gupta VP, Govindaiah, Dutta RK (1994) Diseases of mulberry in India: research priorities and management strategies. Int J Prop Pl Dis 12:1–21

    Google Scholar 

  • Philip T, Latha J, Gobindaiah B, Mandal KC, Bajpai AK (1995) Some observations on the incidence, associated microflora and control of root rot disease of mulberry in South India 34(2):137–139

    Google Scholar 

  • Philip T, Govindaiah, Bajpai AK, Nagabhushanam G, Naidu NR (1997) Preliminary survey on mulberry diseases in South India. Indian J Seric 36:128–132

    Google Scholar 

  • Pinto MV, HS P, MS R, Naik VG (2018) Association mapping of quantitative resistance to charcoal root rot in mulberry germplasm. PloS one 13(7):e0200099

    Google Scholar 

  • Potgieter L, Feurtey A, Dutheil JY, Stukenbrock EH (2020) On variant discovery in genomes of fungal plant pathogens. Front Microbiol 11:626. https://doi.org/10.3389/fmicb.2020.00626

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2(3):225–238

    Article  CAS  Google Scholar 

  • Prasad KV, Dayakar Yadav BR, Sullia SB (1993) Taxonomic status of rust on mulberry in India. Current Sci 65:424–426

    Google Scholar 

  • Prateesh Kumar PM, Maji MD, Gangavar SK, Das NK, Saratchandra B (2000) Development of leaf rust (Peridiospora mori) and dispersal of urediospores in mulberry (Morus spp). Int J Pest Manag 46:195–200

    Article  Google Scholar 

  • Qadri SMH, Gangwar SK, Kumar P, Elangovan PMC, Das NK, Maji MD, Saratchandra B (1999) Assessment of cocoon crop loss due to leaf spot disease of mulberry. Indian J Seric 38:35–39

    Google Scholar 

  • Qin D (2019) Next-generation sequencing and its clinical application. Cancer Biol Med 16(1):4–10. https://doi.org/10.20892/j.issn.2095-3941.2018.0055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajesh T, Jaya M (2017) Next-generation sequencing methods. In: Gunasekaran P, Noronha S, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 143–158. https://doi.org/10.1016/B978-0-444-63667-6.00007-9

  • Rajeswari P, Angappan K (2018) Prevalence of mulberry root rot disease in Tamil Nadu. Int J Chem Stud 6:1573–1578

    Google Scholar 

  • Ramadan AA, Kenta S (2018) Technical review of molecular markers and next-generation sequencing technology to manage plant pathogenic oomycetes. Afr J Biotechnol 17:369–379

    Article  Google Scholar 

  • Ramakrishnan S, Senthilkumar T (2003) Plant parasitic nematodes, a serious threat to mulberry—a review. Indian J Seri 42:82–92

    Google Scholar 

  • Rangaswami G, Narasimhanna MN, Kasiviswanathan K, Sastry CR, Jolly MS (1976) Sericulture manual, vol 1. Mulberry cultivation

    Google Scholar 

  • Reddy CR, Nirmala RS, Ramanamma CH (2009) Efficacy of phytoextracts and oils of certain medicinal plants against Cercospora moricola Cook, incitant of mulberry (Morus alba L.) leaf spot. J Biopestic 2:77–83

    Google Scholar 

  • Rollins L, Coats K, Elliott M, Chastagner G (2016) Comparison of five detection and quantifification methods for Phytophthora ramorum in stream and irrigation water. Plant Dis 100:1202–1211. https://doi.org/10.1094/PDIS-11-15-1380-RE

    Article  CAS  PubMed  Google Scholar 

  • Rosado AWC, Machado AR, Freire FDCO, Pereira OL (2016) Phylogeny, identification, and pathogenicity of Lasiodiplodia associated with postharvest stem-end rot of coconut in Brazil. Plant Dis 100(3):561–568

    Article  CAS  PubMed  Google Scholar 

  • Saratha M, Angappan K, Karthikeyan S, Marimuthu S, Chozhan K (2022a) Actinoalloteichus cyanogriseus: a broad spectrum bio-agent against mulberry root rot pathogens. Egypt J Biol Pest Control 32(1):1–1

    Google Scholar 

  • Saratha M, Angappan K, Karthikeyan S, Marimuthu S, Chozhan K (2022b) Atheliarolfsii associated with mulberry root rot disease in Tamil Nadu, India. Curr Res Environ Appl Mycol J Fungal Biol 12(1):56–64. https://doi.org/10.5943/cream/12/1/5

    Article  Google Scholar 

  • Sarrocco S, Vannacci G (2018) Preharvest application of benefificial fungi as a strategy to prevent postharvest mycotoxin contamination: a review. Crop Prot 110:160–170. https://doi.org/10.1016/j.cropro.2017.11.013

    Article  Google Scholar 

  • Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D (2016) Resistance to root‐knot nematodes Meloidogyne spp. in woody plants. New Phytol 211(1):41–56

    Google Scholar 

  • Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240. https://doi.org/10.1093/hmg/ddq416

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Nat Acad Sci 109(16):6241–6246

    Google Scholar 

  • Sengupta K, Kumar P, Baig M, Govidaiah M (1990) Hand book on pest and disease control of mulberry and silkworm. United Nations, ESCAP, Bangkok

    Google Scholar 

  • Shakoori AR (2017) Fluorescence in situ hybridization (FISH) and its applications. In: Bhat TA, Wani AA (eds) Chromosome structure and aberrations. Springer, India, pp 343–367. https://doi.org/10.1007/978-81-322-3673-3_16

  • Sharma DD, Baqual MF, Gupta VP, Chandrasekhar DS (2000) A study on survey on the occurrence of bacterial blight disease complex in mulberry. Ind J Sericulture 39:113–116

    Google Scholar 

  • Sharma DD, Naik VN, Chowdary NB, Mala VR (2003a) Soilborne diseases of mulberry and their management. Int J Indus Entomol 7(2):93–106

    Google Scholar 

  • Sharma DD, Gupta VP (2005) Soilborne diseases of mulberry and their management. In: Mulberry Crop Protection, (Eds. Govindaiah, V.P. Gupta, D.D. Sharma, S. Rajadurai and V.N. Naik), Central Silk Board, Bangalore, India, pp. 195–228.

    Google Scholar 

  • Sharma DD, Kadambi KRK, Chowdary NB, Yadav BRD (2011) Distribution of soil microflora in various habitats of mulberry (Morus spp.) Golden Jubilee conference—sericulture innovations: before and beyond, CSR&TI, Mysore, pp 70–73

    Google Scholar 

  • Sharma M, Sengupta A, Ghosh R, Agarwal G, Tarafdar A, Nagavardhini A, Pande S, Varshney RK (2016) Genome wide transcriptome profiling of Fusarium oxysporum f sp. ciceris conidial germination reveals new insights into infection related genes. Sci Rep 6:37353

    Google Scholar 

  • Shree MP, Nataraj S (1993) Post-infectional biochemical and physiological changes in mulberry. Curr Sci 65:337–341

    CAS  Google Scholar 

  • Siddaramaiah AL, Krishna Prasad KS, Hecde RK (1978) Epidemiological studies of mulberry leaf spot caused by Cercospora moricola Cooke. Indian J Seric 16:44–47

    Google Scholar 

  • Siddaramaiah AL, Hegde RK (1990) Studies on changes in biochemical constituents as Cercospora infected leaves of mulberry. Mysore J Agric Sci 24:353–357

    Google Scholar 

  • Sikdar P, Okubara P, Mazzola M, Xiao CL (2014) Development of PCR assays for diagnosis and detection of the pathogens Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in apple fruit. Plant Dis 98(2):241–246. https://doi.org/10.1094/PDIS-05-13-0495-RE

    Article  CAS  PubMed  Google Scholar 

  • Singh JK, Tarafdar A, Sharma SK, Biswas KK (2013) Evidence of recombinant citrus tristezavirus isolate occurring in acid lime cv. Pant lemon orchard in Uttarakhand terai region of Northern Himalaya in India. Indian J Virol 24:35–41

    Article  PubMed  Google Scholar 

  • Sinha SK, Saxena SF (1966) First record of bacterial blight of mulberry in India caused by Pseudomonas mon (Boycr et Lambert) Stevens. Indian Phytopath 19:318–319

    Google Scholar 

  • Sowmya P, Naik VN, Sivaprasad V, Naik VG (2018) Characterization and correlation of pathogenicity of Botryodiplodia theobromae isolates, the causal agent of black root rot of mulberry (Morus spp.). Arch Phytopathol Plant Prot 51(19–20):1022–1038. https://doi.org/10.1080/03235408.2018.1544192

  • Sreenivasaprasad S, Mills PR, Brown AE (1994) Nucleotide sequence of the rDNA spacer 1 enables identification of isolates of Colletotrichum as C. acutatum. Mycol Res 98:186–188

    Article  CAS  Google Scholar 

  • Srikantaswamy K, Govindaiah RMM, Bajpai AK, Raveesha KA (1996) Effect of Cercospora moricola on the leafquality in mulberry. Indian J Seric 35:144–146

    Google Scholar 

  • Srivastava S (2016) Molecular diagnostics and application of DNA markers in the management of major diseases of sugarcane. In: Current trends in plant disease diagnostics and management practices. Springer, Cham, pp 299–315.

    Google Scholar 

  • Stehliková D, Luchi N, Aglietti C, Pepori AL, Diez JJ, Santini A (2020) Real-time loop-mediated isothermal amplifification assay for rapid detection of Fusarium circinatum. Biotechniques 69(7):1–7. https://doi.org/10.2144/btn-2019-0168

    Article  CAS  Google Scholar 

  • Sujathamma P, Savithri G, Kumari NV, Krishna VA, Vijaya T, Sairam KVSS, Reddy NS (2014) Effect of organic manures on quantitative and qualitative parameters of mulberry production. Hortflora Res Spectr 3(1):14–20

    Google Scholar 

  • Sukumar J, Padma SD (1999) Diseases of mulberry in India–Research progress and priorities. Adv Mulberry Sericult 152–186

    Google Scholar 

  • Sullia SB, Padma SD (1987) Acceptance of Mildew affected mulberry leaves by silk worm (Bomboxy mori L.) and its effects on cocoon charecteristics. Sericologia 27:693–696

    Google Scholar 

  • Sun H, Sun L, Yang L, Wang Z, Xia Z, Yang X, Jiao Z, Feng J, Liang Y (2022) Loop-mediated isothermal amplification assay for rapid detection of Phoma macdonaldii, the causal agent of sunflower black stem. Plant Dis 106(1):260–265

    Article  CAS  PubMed  Google Scholar 

  • Sun YF, Long HB, Lu FP (2019) First report of the root-knot nematode Meloidogyne enterolobii infecting mulberry in China. Plant Dis 103(9):2481–2481

    Article  Google Scholar 

  • Sutthisa W, Sanoamuang N, Chuprayoon S (2010) Morphological and molecular characterization of Fusarium spp., the fungi associated with mulberry root rot disease innorth-eastern Thailand. Thai J Bot 2(1):25–39

    Google Scholar 

  • Swamy BCN, Govindu HC (1966) A preliminary note on the plant parasitic nematodes of the Mysore State. Indian Phytopathol 19(2):239–240

    Google Scholar 

  • Tanner NA, Zhang Y, Evans TC (2015) Visual detection of isothermal nucleic acid amplifification using pH-sensitive dyes. Biotechniques 58:59–68. https://doi.org/10.2144/000114253

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar A, Ghosh P, Biswas K (2012) In planta distribution, accumulation, movement and persistence of Citrus tristeza virus in citrus host. Indian Phytopathol 65:184

    CAS  Google Scholar 

  • Tarafdar A, Godara S, Dwivedi S, Jayakumar B, Biswas KK (2013) Characterization of Citrus tristeza virus and determination of genetic variability in North-east and South India. Indian Phytopathol 66:302–307

    Google Scholar 

  • Telan IF, Gonzales AT (1998) Botanical fungicides to control mulberry root rot. Sericult Res J (Philippines)

    Google Scholar 

  • Teotia RS, Mandal SK (1993) Bacterial leaf blight disease of mulberry. Indian Silk 32(6):41–44. The Gazette of India, 18.05.2020 [F. No. 13035/15/2019-PP-I]

    Google Scholar 

  • Teotia RS, Sen SK (1994) Mulberry diseases in India and their control. Sericologia 34:1–18

    Google Scholar 

  • Thind BS (2015) Diagnosis and management of bacterial plant diseases. In: Awasthi LP (ed) Recent advances in the diagnosis and management of plant diseases. Springer, India, pp 101–117. https://doi.org/10.1007/978-81-322-2571-3_10

  • Toida Y, Yaegashi T (1984) Description of Meloidogyne suginamiensis n. sp. (Nematoda: Meloidogynidae) from mulberry in Japan. Jpn J Nematol 14:49–57

    Google Scholar 

  • Tsugunori N, Hiroto O, Harumi M, Keiko W, Nobuyuki A, Tetsu H (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63–E63

    Article  Google Scholar 

  • Tsui CK, Woodhall J, Chen W, Lévesque CA, Lau A, Schoen CD, Baschien C, Najafzadeh MJ, de Hoog GS (2011) Molecular techniques for pathogen identification and fungus detection in the environment. IMA Fungus 2(2):177–189

    Article  PubMed  PubMed Central  Google Scholar 

  • van Emmerik CL, Gachulincova I, Lobbia VR, Daniëls MA, Heus HA, Soufifi A et al (2020) Ramifified rolling circle amplifification for synthesis of nucleosomal DNA sequences. Anal Biochem 588:113469. https://doi.org/10.1016/j.ab.2019.113469

    Article  CAS  PubMed  Google Scholar 

  • Vandemark G, Martnez OPV, de Alvardo MJ (2000) Assessment of genetic relationships among isolates of Macrophomina phaseolina using simplified AFLP technique and two different methods of analysis. Mycologia 92:656–664

    Article  CAS  Google Scholar 

  • Vijayan K, Gnanesh BN (2022) Genomic research in mulberry for higher silk productivity. In: Seritech, the new concepts in sericulture, the 26th international sericultural commission congress, 7–11th September 2022, Cluj-Napoca, Romania, pp 49–74

    Google Scholar 

  • Vijayan K, Gnanesh BN, Shabnam AA, Sangannavar PA, Sarkar T, Zhao W (2022a) Genomic designing for abiotic stress resistance in mulberry (Morus spp.). In: Genomic designing for abiotic stress resistant technical crops. Springer Nature. https://doi.org/10.1007/978-3-031-05706-9_7

  • Vijayan K, Arunakumar GS, Gnanesh BN, Sangannavar PA, Ramesha A, Zhao W (2022b) Genomic designing for biotic stress resistance in mulberry (Morus spp.). In: Genomic designing for biotic stress resistant technical crops. Springer Nature. https://doi.org/10.1007/978-3-031-09293-0_8

  • Villa-Carvajal M, Querol A, Belloch C (2006) Identification of species in the genus Pichia by restriction of the internal transcribed spacers (ITS1 and ITS2) and the 5.8S ribosomal DNA gene. Anton Leeuw 90:171–181

    Article  CAS  Google Scholar 

  • Waliullah S, Ling KS, Cieniewicz EJ, Oliver JE, Ji P, Ali ME (2020) Development of loop-mediated isothermal amplifification assay for rapid detection of cucurbit leaf crumple virus. Int J Mol Sci 21(5):1756. https://doi.org/10.3390/ijms21051756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HC (1980) Rust of mulberry (Aecidium nori). Nat Sci Counc Mon 8:604–615

    Google Scholar 

  • Wang T, Gao C, Cheng Y, Li Z, Chen J, Guo L, Xu J (2020) Molecular diagnostics and detection of Oomycetes on fiber crops. Plants 9(6):769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Ji H, Yu Y, Wang X, Cheng Y, Li Z, Chen J, Guo L, Xu J, Gao C (2021) Development of a loop-mediated isothermal amplification method for the rapid detection of Phytopythium vexans. Front Microbiol, p 2488

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, London, UK, pp 315–322

    Google Scholar 

  • Wongkaew P, Poosittisak S (2015) Diagnosis of sugarcane white leaf disease using the highly sensitive DNA based voltammetric electrochemical determination. Am J Plant Sci 5:2256–2268. https://doi.org/10.4236/ajps.2014.515240

    Article  CAS  Google Scholar 

  • Xie HH, Wei JG, Liu F, Pan XH, Yang XB (2014) First report of mulberry root rot caused by Lasiodiplodia theobromae in China. Plant Dis 98(11):1581–1581

    Article  PubMed  Google Scholar 

  • Xu J (2020) Fungal species concepts in the genomics era. Genome 63(9):459–468

    Article  PubMed  Google Scholar 

  • Xue L, Zhang L, Yang XX, Huang X, Wu W, Zhou X, White JF, Liu Y, Li C (2019) Characterization, phylogenetic analyses, and pathogenicity of Colletotrichum species on Morus alba in Sichuan Province, China. Plant Dis 103(10):2624–2633

    Article  CAS  PubMed  Google Scholar 

  • Yadav BRD, Sharma DD, Pratheesh Kumar PM, Naik VG (2011) Investigations into mulberry root rot disease, identification of QTLs conferring resistance and trait introgression–a pilot study. In: Annual report 2010–11. Mysuru: Central Sericultural Research and Training Institute, p 19

    Google Scholar 

  • Yang X, Sun L, Sun H, Hong Y, Xia Z, Pang W, Piao Z, Feng J, Liang Y (2022) A loop-mediated isothermal DNA amplification (LAMP) assay for detection of the clubroot pathogen Plasmodiophora brassicae. Plant Disease, pp PDIS-11

    Google Scholar 

  • Yoshida S, Murakami R, Watanabe T, Koyama A (2001) Rhizopus rot of mulberry-grafted saplings caused by Rhizopus oryzae. J Gen Plant Pathol 67:291–293

    Article  Google Scholar 

  • Yoshida S, Shirata A (1999) The mulberry anthracnose fungus, Colletotrichum acutatum, overwinters on a mulberry tree. Ann Phytopathol Soc Jpn 65:274–280

    Article  Google Scholar 

  • Zhang Y, Zhang S, Liu X, Wen H, Wang M (2010) A simple method of genomic DNA extraction suitable for analysis of bulk fungal strains. Lett Appl Microbiol 51:114–118. https://doi.org/10.1111/j.1472-765X.2010.02867.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Shao H, You C, Feng Y, Xie Z (2020) Characterization of root-knot nematodes infecting mulberry in Southern China. J Nematol 52:1–8. https://doi.org/10.21307/jofnem-2020-004

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ng TK, Lee KC, Leung ZW, Yau WF, Wong WS (2022) Development and evaluation of loop-mediated isothermal amplification (LAMP) as a preliminary diagnostic tool for brown root rot disease caused by Phellinus noxius (Corner) GH cunningham in hong kong urban tree management. Sustainability 14(15):9708

    Article  CAS  Google Scholar 

  • Zhu Z, Dong Z, Mo R, Zhang C, Zuo Y, Yu C, Hu X (2022) First report of Colletotrichum aenigma causing anthracnose on mulberry leaves in China. Plant Dis. https://doi.org/10.1094/PDIS-05-22-1107-PDN

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Gnanesh B.N. acknowledges the Science and Engineering Research Board (SERB), New Delhi, for financial support (SERBSB/S2/RJN-049/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belaghihalli N. Gnanesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gnanesh, B.N., Arunakumar, G.S., Tejaswi, A., Supriya, M., Pappachan, A., Harshitha, M.M. (2023). Molecular Diagnostics of Soil-Borne and Foliar Diseases of Mulberry: Present Trends and Future Perspective. In: Gnanesh, B.N., Vijayan, K. (eds) The Mulberry Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-031-28478-6_9

Download citation

Publish with us

Policies and ethics