Skip to main content

Hydrogen Laminar Flames

  • Chapter
  • First Online:
Hydrogen for Future Thermal Engines

Part of the book series: Green Energy and Technology ((GREEN))

  • 1015 Accesses

Abstract

Hydrogen holds great promise as a chemical energy carrier for transporting and storing renewable energy. For the use of hydrogen, thermochemical energy conversion generating electricity, mechanical power, or high temperature heat has many advantages, such as robustness, versatility, and flexibility. However, hydrogen is very different from commonly used hydrocarbon fuels. Because of its special chemical and molecular-transport properties, it has very peculiar combustion behavior, which is characterized by especially high flame speeds roughly a factor of ten larger compared with methane, and by the occurrence of intrinsic flame instabilities for lean premixed combustion, which can substantially alter flame structure, surface, and dynamics. The focus of this chapter is on these two aspects in the context of laminar flames. First, the reasons for the particularly high unstretched laminar flame speeds are explained followed by a discussion on the effects of flame stretch. The main part of the chapter deals with the intrinsic flame instabilities including both hydrodynamic and thermodiffusive instabilities and their interplay, which are discussed in terms of theory, experimental evidence, numerical simulations, and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the definitions of mixture fraction and progress variable, the reader is referred to the original works [77, 78].

References

  1. Dreizler A, Pitsch H, Scherer V, Schulz C, Janicka J (2021) Appl Energy Combust Sci 7:100040

    Google Scholar 

  2. Miranda PE (2018) Science and engineering of hydrogen-based energy technologies: hydrogen production and practical applications in energy generation. Academic Press

    Google Scholar 

  3. Verhelst S, Wallner T (2009) Progress in energy and combustion science 35(6):490

    Google Scholar 

  4. Naegler T, Simon S, Klein M, Gils HC (2015) Int J Energy Res 39(15):2019

    Google Scholar 

  5. Matalon M (2007) Annu Rev Fluid Mech 39:163

    Google Scholar 

  6. Matalon M (2018) Fluid Dyn Res 50(5):051412

    Google Scholar 

  7. Sivashinsky G (1977) Combust Sci Technol 15(3–4):137

    Google Scholar 

  8. Mitani T, Williams F (1980) Combust Flame 39(2):169

    Google Scholar 

  9. Ronney PD (1990) Combust Flame 82(1):1

    Google Scholar 

  10. Huo J, Saha A, Shu T, Ren Z, Law CK (2019) Phys Rev Fluids 4(4):043201

    Google Scholar 

  11. Berger L, Kleinheinz K, Attili A, Pitsch H (2019) Proc Combust Inst 37(2):1879

    Google Scholar 

  12. Creta F, Lapenna PE, Lamioni R, Fogla N, Matalon M (2020) Combust Flame 216:256

    Google Scholar 

  13. Creta F, Matalon M (2011) J Fluid Mech 680:225

    Google Scholar 

  14. Lapenna PE, Lamioni R, Troiani G, Creta F (2019) Proc Combust Inst 37(2):1945

    Google Scholar 

  15. Berger L, Grinberg M, Jürgens B, Lapenna PE, Creta F, Attili A, Pitsch H (2022) Proc Combust Inst 39

    Google Scholar 

  16. Berger L, Attili A, Pitsch H (2022) Combust Flame 240:111936

    Google Scholar 

  17. Berger L, Attili A, Pitsch H (2022) Combust Flame 244:112254

    Google Scholar 

  18. Fernández-Galisteo D, Kurdyumov VN, Ronney PD (2018) Combust Flame 190:133

    Google Scholar 

  19. Hesse R, Beeckmann J, Pitsch H (2019) Ninth European combustion meeting, Lisbon, Portugal

    Google Scholar 

  20. Beeckmann J, Hesse R, Kruse S, Berens A, Peters N, Pitsch H, Matalon M (2017) Proc Combust Inst 36(1):1531

    Google Scholar 

  21. Dayma G, Halter F, Dagaut P (2014) Combust Flame 161(9):2235

    Google Scholar 

  22. Krejci MC, Mathieu O, Vissotski AJ, Ravi S, Sikes TG, Petersen EL, Kérmonès A, Metcalfe W, Curran HJ (2013) J Eng Gas Turbines Power 135(2)

    Google Scholar 

  23. Sánchez AL, Williams FA (2014) Progr Energy Combust Sci 41:1

    Google Scholar 

  24. Peters N, Williams F (1987) Combust Flame 68(2):185

    Google Scholar 

  25. Mauß F, Peters N, Rogg B, Williams F (1993) Reduced kinetic mechanisms for applications in combustion systems. Springer, pp 29–43

    Google Scholar 

  26. Law CK (2010) Combustion physics. Cambridge University Press

    Google Scholar 

  27. Tang C, Huang Z, Law C (2011) Proc Combust Inst 33(1):921

    Google Scholar 

  28. Darrieus G (1946) Sixth international congress of applied mathematics

    Google Scholar 

  29. Landau L (1944) Acta Physicochim. USSR 19:77

    Google Scholar 

  30. Markstein GH (1964) Nonsteady flame propagation. The Macmillan Company

    Google Scholar 

  31. Pelce P, Clavin P (1982) J Fluid Mech 124:219

    Google Scholar 

  32. Matalon M, Matkowsky BJ (1982) J Fluid Mech 124:239

    Google Scholar 

  33. Clavin P, Williams F (1982) J Fluid Mech 116:251

    Google Scholar 

  34. Frankel M, Sivashinsky G (1982) Combust Sci Technol 29(3–6):207

    Google Scholar 

  35. Lamioni R, Lapenna PE, Troiani G, Creta F (2019) Proc Combust Inst 37(2):1815

    Google Scholar 

  36. Creta F, Matalon M (2011) Proc Combust Inst 33(1):1087

    Google Scholar 

  37. Varea E, Beeckmann J, Pitsch H, Chen Z, Renou B (2015) Proc Combust Inst 35(1):711

    Google Scholar 

  38. Beeckmann J, Hesse R, Schaback J, Pitsch H, Varea E, Chaumeix N (2019) Proc Combust Inst 37(2):1521

    Google Scholar 

  39. Huang Z, Zhang Y, Zeng K, Liu B, Wang Q, Jiang D (2006) Combust Flame 146(1–2):302

    Google Scholar 

  40. Bechtold J, Matalon M (2001) Combust Flame 127(1–2):1906

    Google Scholar 

  41. Matalon M, Cui C, Bechtold J (2003) J Fluid Mechan 487:179

    Google Scholar 

  42. Sung C, Liu J, Law C (1996) Combust Flame 106(1–2):168

    Google Scholar 

  43. Park O, Veloo PS, Liu N, Egolfopoulos FN (2011) Proc Combust Inst 33(1):887

    Google Scholar 

  44. Giovangigli V, Smooke M (1987) Combust Sci Technol 53(1):23

    Google Scholar 

  45. Guo H, Ju Y, Maruta K, Niioka T, Liu F (1997) Combust Flame 109(4):639

    Google Scholar 

  46. Guo H, Smallwood GJ, Liu F, Ju Y, Gülder ÖL (2005) Proc Combust Inst 30(1):303

    Google Scholar 

  47. Barenblatt G (1962) J Appl Mech Tech Phys 4:21

    Google Scholar 

  48. Sivashinsky GI (1977) Acta Astronaut 4(11):1177

    Google Scholar 

  49. Clavin P, Searby G (2016) Combustion waves and fronts in flows: flames, shocks, detonations, ablation fronts and explosion of stars. Cambridge University Press

    Google Scholar 

  50. Lapenna PE, Lamioni R, Creta F (2021) Proc Combust Inst 38(2):2001

    Google Scholar 

  51. Creta F, Lamioni R, Lapenna PE, Troiani G (2016) Phys Rev E 94(5):053102

    Google Scholar 

  52. Lamioni R, Lapenna PE, Troiani G, Creta F (2018) Flow Turbul Combust 101(4):1137

    Google Scholar 

  53. Attili A, Lamioni R, Berger L, Kleinheinz K, Lapenna PE, Pitsch H, Creta F (2021) Proc Combust Inst 38(2):1973

    Google Scholar 

  54. Lamioni R, Lapenna PE, Berger L, Kleinheinz K, Attili A, Pitsch H, Creta F (2020) Combust Sci Technol 192(11):1998

    Google Scholar 

  55. Yu R, Bai XS, Bychkov V (2015) Phys Rev E 92(6):063028

    Google Scholar 

  56. Frouzakis CE, Fogla N, Tomboulides AG, Altantzis C, Matalon M (2015) Proc Combust Inst 35(1):1087

    Google Scholar 

  57. Sivashinsky GI (1983) Ann Rev Fluid Mech 15(1):179

    Google Scholar 

  58. Addabbo R, Bechtold J, Matalon M (2002) Proc Combust Inst 29(2):1527

    Google Scholar 

  59. Law C (2006) Combust Sci Technol 178(1–3):335

    Google Scholar 

  60. Berger L, Attili A, Pitsch H (2022) Combust Flame 240:111935

    Google Scholar 

  61. Denet B, Haldenwang P (1995) Combust Sci Technol 104(1–3):143

    Google Scholar 

  62. Sharpe G (2003) Combust Theory Modell 7(1):45

    Google Scholar 

  63. Kadowaki S, Hasegawa T (2005) Progr Energy Combust Sci 31(3):193

    Google Scholar 

  64. Yuan J, Ju Y, Law CK (2007) Proc Combust Inst 31(1):1267

    Google Scholar 

  65. Altantzis C, Frouzakis C, Tomboulides A, Matalon M, Boulouchos K (2012) J Fluid Mechan 700:329

    Google Scholar 

  66. Kadowaki S, Suzuki H, Kobayashi H (2005) Proc Combust Inst 30(1):169

    Google Scholar 

  67. Sharpe G, Falle S (2006) Combust Theory Modell 10(3):483

    Google Scholar 

  68. Kadowaki S, Takahashi H, Kobayashi H (2011) Proc Combust Inst 33(1):1153

    Google Scholar 

  69. Yu J, Yu R, Bai X, Sun M, Tan JG (2017) Int J Hydrog Energy 42(6):3790

    Google Scholar 

  70. Rastigejev Y, Matalon M (2006) J Fluid Mech 554:371

    Google Scholar 

  71. Pope SB (2013) Proc Combust Inst 34(1):1

    Google Scholar 

  72. Wu H, Ihme M (2016) Fuel 186:853

    Google Scholar 

  73. Van Oijen J, Donini A, Bastiaans R, ten Thije Boonkkamp J, De Goey L (2016) Progr Energy Combust Sci 57:30

    Google Scholar 

  74. Balarac G, Pitsch H, Raman V (2008) Phys Fluids 20(3):035114

    Google Scholar 

  75. Berger L, Kleinheinz K, Attili A, Bisetti F, Pitsch H, Mueller ME (2018) Combust Theory Modell 22(3):480

    Google Scholar 

  76. Lapenna PE, Berger L, Attili A, Lamioni R, Fogla N, Pitsch H, Creta F (2021) Combust Theory Modell 25(6):1064

    Google Scholar 

  77. Regele JD, Knudsen E, Pitsch H, Blanquart G (2013) Combust Flame 160(2):240

    Google Scholar 

  78. Schlup J, Blanquart G (2019) Proc Combust Inst 37(2):2511

    Google Scholar 

  79. de Swart JA, Bastiaans RJ, van Oijen JA, de Goey LPH, Cant RS (2010) Flow Turbul Combust 85(3):473

    Google Scholar 

  80. Vreman A, Van Oijen J, De Goey L, Bastiaans R (2009) Int J Hydrog Energy 34(6):2778

    Google Scholar 

  81. Gicquel O, Darabiha N, Thévenin D (2000) Proc Combust Inst 28(2):1901

    Google Scholar 

  82. Wen X, Zirwes T, Scholtissek A, Böttler H, Zhang F, Bockhorn H, Hasse C (2022) Combust Flame 238:111815

    Google Scholar 

  83. Wen X, Zirwes T, Scholtissek A, Böttler H, Zhang F, Bockhorn H, Hasse C (2022) Combust Flame 238:111808

    Google Scholar 

  84. Colin O, Ducros F, Veynante D, Poinsot T (2000) Phys Fluids 12(7):1843

    Google Scholar 

  85. Wang G, Boileau M, Veynante D (2011) Combust Flame 158(11):2199

    Google Scholar 

  86. Bychkov VV (1998) Phys Fluids 10(8):2091

    Google Scholar 

  87. Howarth T, Aspden A (2022) Combust Flame 237:111805

    Google Scholar 

  88. Fiorina B, Vicquelin R, Auzillon P, Darabiha N, Gicquel O, Veynante D (2010) Combust Flame 157(3):465

    Google Scholar 

Download references

Acknowledgements

This work was in part funded by the European Union as part of the ERC Advanced Grant project HYDROGENATE. FC is grateful to Prof. Moshe Matalon for the precious guidance over many years on the topic of intrinsic flame instabilities. PL acknowledges the support of the Lazio region in the context of “POR FESR LAZIO 2014–2020” by means of the “GreenH2-CFD” project and the support of Sapienza University by means of the early stage researchers funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Pitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lapenna, P.E., Berger, L., Creta, F., Pitsch, H. (2023). Hydrogen Laminar Flames. In: Tingas, EA. (eds) Hydrogen for Future Thermal Engines. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28412-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28412-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28411-3

  • Online ISBN: 978-3-031-28412-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics