Skip to main content

Plant Mycobiome in Sustainable Agriculture

  • Chapter
  • First Online:
Plant Mycobiome

Abstract

It is widely known that interactions between plants and their inhabiting fungi are essential for sustainable and ecological agriculture. Plant mycobiota provide a number of beneficial effects to their host plants, increasing plant growth and protecting against harmful pathogens and abiotic environmental stresses. However, due to the lack of appropriate technical, bioinformatics, and molecular tools, the extent to which plant mycobiota interact within the overall plant microbiota remains largely undiscovered. Furthermore, our limited knowledge and research experience have restricted our practises for appropriate management of plant mycobiota. Nevertheless, recent advances in fungal biology and their interactions with plants have allowed us to take further steps toward deciphering this area of research. This chapter focuses on recent advances at the plant-soil interface, i.e., the mycobiome, for eco-efficient agricultural production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alzarhani AK, Clark DR, Underwood GJ, Ford H, Cotton TA, Dumbrell AJ (2019) Are drivers of root-associated fungal community structure context specific? ISME J 13:1330–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN (2019) Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci U S A 116:23163–23168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M, Lee YS (2015) Penicillium menonorum: a novel fungus to promote growth and nutrient management in cucumber plants. Microbiology 43:49–56

    Google Scholar 

  • Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2016) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 41(2):fuw040

    Article  Google Scholar 

  • Barberán A, Mcguire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, Essene A, Hubbell SP, Faircloth BC, Fierer N (2015) Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett 18:1397–1405

    Article  PubMed  Google Scholar 

  • Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948

    Article  CAS  PubMed  Google Scholar 

  • Bastida F, Hernández T, Albaladejo J, García C (2013) Phylogenetic and functional changes in the microbial community of long-term restored soils under semiarid climate. Soil Biol Biochem 65:12–21

    Article  CAS  Google Scholar 

  • Bellini A, Gilardi G, Idbella M, Zotti M, Pugliese M, Bonanomi G, Gullino ML (2023) Trichoderma enriched compost BCAs and potassium phosphite control Fusarium wilt of lettuce without affecting soil microbiome at genus level. Appl Soil Ecol 182:104678

    Google Scholar 

  • Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P (2012) Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol Rev 87:52–71

    Article  PubMed  Google Scholar 

  • Bennett JA et al (2017) Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355:181–184

    Article  CAS  PubMed  Google Scholar 

  • Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Freschet GT, Iversen CM et al (2020) The fungal collaboration gradient dominates the root economics space in plants. Science. Advances 6:eaba3756

    CAS  Google Scholar 

  • Bernard E, Larkin RP, Tavantzis S et al (2012) Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl Soil Ecol 52:29–41

    Article  Google Scholar 

  • Bever JD (2002) Negative feedback within a mutualism: host–specific growth of mycorrhizal fungi reduces plant benefit. Proc R Soc B 269:2595–2601

    Article  PubMed  PubMed Central  Google Scholar 

  • Bever JD, Platt TG, Morton ER (2012) Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol 66:265–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bharti R, Grimm DG (2019) Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform 22:178–193

    Article  PubMed Central  Google Scholar 

  • Blok WJ, Lamers JG, Termorshuizen AJ, Bollen GJ (2000) Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology 90:253–259

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Zotti M, Idbella M, Di Silverio N, Carrino L et al (2020) Decomposition and organic amendments chemistry explain contrasting effects on plant growth promotion and suppression of Rhizoctonia solani damping off. PLoS One 15(4):e0230925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanomi G, Zotti M, Idbella M, Cesarano G, Al-Rowaily SL, Abd-ElGawad AM (2022) Mixtures of organic amendments and biochar promote beneficial soil microbiota and affect Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Sclerotinia minor disease suppression. Plant Pathol 71:818–829

    Article  CAS  Google Scholar 

  • Bonfante P, Venice F, Lanfranco L (2019) The mycobiota: fungi take their place between plants and bacteria. Curr Opin Microbiol 49:18–25

    Article  CAS  PubMed  Google Scholar 

  • Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest. Ecol Lett 7:538–546

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7:plv030

    Article  PubMed  PubMed Central  Google Scholar 

  • Chadha N, Mishra M, Rajpal K, Bajaj R, Choudhary DK, Varma A (2015) An ecological role of fungal endophytes to ameliorate plants under biotic stress. Arch Microbiol 197:869–881

    Article  CAS  PubMed  Google Scholar 

  • Corrales A, Mangan SA, Turner BL, Dalling JW (2016) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392

    Article  PubMed  Google Scholar 

  • Dickie IA (2007) Host preference, niches and fungal diversity. New Phytol 174:225–228

    Article  Google Scholar 

  • Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS (2014) Mycorrhizas in changing ecosystems. Botany 92:149–162

    Article  CAS  Google Scholar 

  • Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 14(11):e0223847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrmann J, Ritz K (2014) Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376:1–29

    Article  CAS  Google Scholar 

  • Eissenstat DM, Kucharski JM, Zadworny M, Adams TS, Koide RT (2015) Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest. New Phytol 208:114–124

    Article  PubMed  Google Scholar 

  • Ellouze W, Taheri AE, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil fungal resources in annual cropping systems and their potential for management. Biomed Res Int 2014:531824

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez C, Kennedy P (2016) Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209:1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C, Le Hingrat Y, Alabouvette C, Steinberg C (2012) Potato soil-borne diseases. A Rev Agron Sustain Dev 32(1):93–132

    Article  Google Scholar 

  • Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores O, Garnier E, Wright IJ, Reich PB, Pierce S, Dìaz S, Pakeman RJ, Rusch GM, Bernard-Verdier M, Testi B et al (2014) An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecol Evol 4:2799–2811

    Article  PubMed  PubMed Central  Google Scholar 

  • Francioli D, van Rijssel SQ, van Ruijven J, Termorshuizen AJ, Cotton TEA, Dumbrell AJ, Raaijmakers JM, Weigelt A, Mommer L (2020) Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil 461:91–105

    Article  Google Scholar 

  • Freeman S, Rodriguez RJ (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  CAS  PubMed  Google Scholar 

  • Fuchs B, Krauss J (2019) Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol 38:98–103

    Article  Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133

    Article  CAS  PubMed  Google Scholar 

  • Gan YT, Miller PR, McConkey BG, Zentner RP, Stevenson FC, McDonald CL (2003) Influence of diverse cropping sequences on durum wheat yield and protein in the semiarid northern Great Plains. Agron J 95:245–252

    Article  Google Scholar 

  • Garbeva P, van Veen PJA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  CAS  PubMed  Google Scholar 

  • Glenn DM, Bassett C, Dowd SE (2015) Effect of pest management system on ‘Empire’ apple leaf phyllosphere populations. Sci Hortic 183:58–65

    Article  Google Scholar 

  • Grabka R, d’Entremont TW, Adams SJ, Walker AK, Tanney JB, Abbasi PA, Ali S (2022) Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plan Theory 11:384

    Google Scholar 

  • Graham JH, Menge JA (1982) Influence of vesicular–arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathology 72:95–98

    Article  Google Scholar 

  • Hao G, McCormick S, Usgaard T, Tiley H, Vaughan MM (2020) Characterization of three Fusarium graminearum effectors and their roles during Fusarium head blight. Front Plant Sci 11:579553

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttiläd AM, Compante S, Campisanof A, Döringg M, Sessitsche A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mader P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Hiddink GA, Van Bruggen AHC, Termorshuizen AJ, Raaijmakers JM, Semenov AV (2005) Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. Tritici and its antagonist, Pseudomonas fluorescens. Eur J Plant Pathol 113:417–435

    Article  Google Scholar 

  • Hoitink H, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Howard RJ (1996) Cultural control of plant diseases: a historical perspective. Can J Plant Pathol 18:145–150

    Article  Google Scholar 

  • Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MGA et al (2018) Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun 9:2738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Iacomino G, Sarker TC, Ippolito F, Bonanomi G, Vinale F, Staropoli A, Idbella M (2022) Biochar and compost application either alone or in combination affects vegetable yield in a volcanic mediterranean soil. Agronomy 12(9):1996

    Google Scholar 

  • Idbella M, Bonanomi G, De Filippis F, Amor G, Chouyia FE, Fechtali T, Mazzoleni S (2021) Contrasting effects of Rhizophagus irregularis versus bacterial and fungal seed endophytes on Trifolium repens plant-soil feedback. Mycorrhiza 31:103–115

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal AK, Elad Y, Paudel I, Graber ER, Cytryn E, Frenkel O (2017) Linking the belowground microbial composition, diversity and activity to soilborne disease suppression and growth promotion of tomato amended with biochar. Sci Rep 7:44382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119

    Article  PubMed  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Karlsson I, Friberg H, Steinberg C, Persson P (2014) Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One 9:e111786

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV (2015) In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol 141:523–543

    Article  CAS  Google Scholar 

  • Kytoviita MM, Vestberg M, Tuomi JA (2003) Test of mutual aid in common fungal networks: established vegetation negates benefit in seedling. Ecology 84:898–906

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115

    Article  CAS  Google Scholar 

  • Larsen J, Cornejo P, Barea JM (2009) Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and the plant growth promoting rhizobacteria Paenibacillus polymyxa and P. macerans in the mycorrhizosphere of Cucumis sativus. Soil Biol Biochem 41:286–292

    Article  CAS  Google Scholar 

  • Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S, Mason KE, Ostle NJ, Johnson D et al (2018) Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J 12:1794–1805

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh J, Fitter AH, Hodge A (2011) Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria. FEMS Microbiol Ecol 76:428–438

    Article  CAS  PubMed  Google Scholar 

  • Li R, Khafipour E, Krause DO, Entz MH, de Kievit TR, Fernando WGD (2012) Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One 7:e51897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS One 10:e0130081

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang M, Johnson D, Burslem DFRP, Yu S, Fang M, Taylor JD, Taylor AFS, Helgason T, Liu X (2020) Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat Commun 11:1–7

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wu M, Liu J, Qu Y, Gao Y, Ren A (2020) Tripartite interactions between endophytic fungi, arbuscular mycorrhizal fungi, and Leymus chinensis. Microb Ecol 79:98–109

    Article  CAS  PubMed  Google Scholar 

  • Louarn S, Nawrocki A, Thorup-Kristensen K, Lund OS, Jensen ON, Collinge DB, Jensen B (2013) Proteomic changes and endophytic micromycota during storage of organically and conventionally grown carrots. Postharvest Biol Technol 76:26–33

    Article  CAS  Google Scholar 

  • Mangan SA et al (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466:752–755

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annu Rev Phytopathol 10:429–454

    Article  CAS  PubMed  Google Scholar 

  • McGuir K (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mommer L, Cotton TEA, Raaijmakers JM, Termorshuizen AJ, van Ruijven J, Hendriks M, van Rijssel SQ, van de Mortel JE, van der Paauw JW, Schijlen EGWM et al (2018) Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol 218:542–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L (2018) Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol 17(2):95–109

    Article  Google Scholar 

  • Olsson PA, Thingstrup I, Jakobsen I et al (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of giant dogwood. Mycoscience 45:35–41

    Article  Google Scholar 

  • Pagano MC, Correa EJA, Duarte NF, Yelikbayev B, O’Donovan A, Gupta VK (2017) Advances in eco-efficient agriculture: the plant-soil mycobiome. Agriculture 7:14

    Article  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pedersen EA, Hughes GR (1992) The effect of crop rotation on development of the septoria disease complex on spring wheat in Saskatchewan. Can J Plant Pathol 14:152–158

    Article  Google Scholar 

  • Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M (2020) An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. Fungal Biol Rev 34:115–125

    Article  Google Scholar 

  • Peters RD, Sturz AV, Carter MR, Sanderson JB (2003) Developing disease-suppressive soils through crop rotation and tillage management practices. Soil Tillage Res 72:181–192

    Article  Google Scholar 

  • Pineda A, Kaplan I, Hannula SE, Ghanem W, Bezemer TM (2020) Conditioning the soil microbiome through plant–soil feedbacks suppresses an aboveground insect pest. New Phytol 226:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rai M, Agarkar G (2016) Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42(3):428–438

    Article  CAS  PubMed  Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  PubMed  Google Scholar 

  • Robinson RM, Morrison DJ, Jensen GD (2004) Necrophylactic periderm formation in the roots of western larch and Douglas-fir trees infected with Armillaria ostoyae. II. The response to the pathogen. For Pathol 34(2):119–129

    Article  Google Scholar 

  • Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H (2006) Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 38:3443–3452

    Article  CAS  Google Scholar 

  • Roth R, Paszkowski U (2017) Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr Opin Plant Biol 39:50–56

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev 21:67–74

    Article  Google Scholar 

  • Saikkonen K, Wali PR, Helander M (2010) Genetic compatibility determines endophyte-grass combinations. PLoS One 5:e11395

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Cañizares C, Jorrin B, Poole P, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    Article  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013) The epichloae: alkaloid diversity and roles in symbiosis with grasses. Curr Opin Plant Biol 16:480–488

    Article  CAS  PubMed  Google Scholar 

  • Schiro G, Colangeli P, Müller MEH (2019) A metabarcoding analysis of the mycobiome of wheat ears across a topographically heterogeneous field. Front Microbiol 10:2095

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Consortium FB (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. PNAS 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, Jackson BG, Pritchard WJ, De Long JR, Oakley S et al (2018) Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv 4:eaau4578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah N, Meisel JS, Pop M (2019) Embracing ambiguity in the taxonomic classification of microbiome sequencing data. Front Genet 10:1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Mastouri F, Harman GE (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Smith GS (1988) The role of phosphorus nutrition in interactions of vesicular–arbuscular mycorrhizal fungi with soilborne nematodes and fungi. Phytopathology 78:371–374

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis, 3rd edn. Elsevier/Academic, New York

    Google Scholar 

  • Sousa LP, Da Silva MJ, Mondego JMC (2018) Leaf-associated bacterial microbiota of coffee and its correlation with manganese and calcium levels on leaves. Genet Mol Biol 41:455–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney CJ, de Vries FT, van Dongen BE, Bardgett DR (2020) Root traits explain rhizosphere fungal community composition among temperate grassland plant species. New Phytol 229:1492–1507

    Article  PubMed  Google Scholar 

  • Swer H, Dkhar MS, Kayang H (2011) Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. J Org Syst 6:3–12

    Google Scholar 

  • Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J et al (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10:346–362

    Article  CAS  PubMed  Google Scholar 

  • Tetali S, Karpagavalli S, Pavani SL (2015) Management of dry root rot of black gram caused by Macrophomina phaseolina (Tassi) Goid. using bio agent. Plant Arch 15(2):647–650

    Google Scholar 

  • Thomas L, Mallesha BC, Bagyaraj DJ (1994) Biological control of damping-off of cardamom by the VA mycorrhizal fungus, Glomus fasciculatum. Microbiol Res 149:413–417

    Article  Google Scholar 

  • Traquair JA (1995) Fungal biocontrol of root diseases: endomycorrhizal suppression of cylindrocarpon root rot. Can J Bot 73:S89–S95

    Article  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18:607–621

    Article  CAS  PubMed  Google Scholar 

  • Unterseher M (2011) Diversity of fungal endophytes in temperate forest trees. In: Pirttilä AM, Frank AC (eds) Endophytes of forest trees: biology and applications, vol 80. Springer, Dordrecht, pp 31–46

    Chapter  Google Scholar 

  • Vallad GE, Cooperband L, Goodman RM (2003) Plant foliar disease suppression mediated by composted forms of paper mill residuals exhibits molecular features of induced resistance. Physiol Mol Plant Pathol 63:65–77

    Article  CAS  Google Scholar 

  • Valverde-Barrantes OJ, Smemo KA, Blackwood CB (2015) Fine root morphology is phylogenetically structured, but nitrogen is related to the plant economics spectrum in temperate trees. Funct Ecol 29:796–807

    Article  Google Scholar 

  • Van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T et al (2013) Plant–soil feedbacks: the past, the present and future challenges. J Ecol 101(2):265–276

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  Google Scholar 

  • Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA (2019) Fungal bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun 10:1–10

    Article  CAS  Google Scholar 

  • Wei G, Ning K, Zhang G, Yu H, Yang S, Dai F, Dong L, Chen S (2021) Compartment niche shapes the assembly and network of Cannabis sativa associated microbiome. Front Microbiol 12:714993

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson GWT, Hetrick BAD, Kitt DG (1988) Suppression of mycorrhizal growth response of big bluestem by non-sterile soil. Mycologia 80:338–343

    Article  Google Scholar 

  • Woo SL, Hermosa R, Lorito M et al (2022) Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat Rev Microbiol. https://doi.org/10.1038/s41579-022-00819-5

  • Xiong C, Zhu YG, Wang JT, Singh B, Han LL, Shen JP, Li PP, Wang GB, Wu CF, Ge AH, Zhang LM, He JZ (2021) Host selection shapes crop microbiome assembly and network complexity. New Phytol 229:1091–1104

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yang Z, Wang QC, Wang YL, Hu HW, He JZ et al (2022) Compartment and plant identity shape tree mycobiome in a subtropical forest. Microbiol Spectr 10(4):e01347–e01322

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin H, Wheeler E, Phillips R (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221

    Article  CAS  Google Scholar 

  • Zhao PY, Li C, Chai BF (2018) Environmental filters drive the assembly of the soil fungal community in the Larix principis-rupprechtii forests of the Guandi Mountains. Huan Jing Ke Xue 39:3876–3884

    PubMed  Google Scholar 

  • Zhong R, Xia C, Ju YW, Li NN, Zhang XX, Nan ZB, Christensen MJ (2018) Effects of epichloë gansuensis on root-associated fungal communities of achnatherum inebrians under different growth conditions. Fungal Ecol 31:29–36

    Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Idbella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idbella, M., Mazzoleni, S., Bonanomi, G. (2023). Plant Mycobiome in Sustainable Agriculture. In: Rashad, Y.M., Baka, Z.A.M., Moussa, T.A.A. (eds) Plant Mycobiome. Springer, Cham. https://doi.org/10.1007/978-3-031-28307-9_5

Download citation

Publish with us

Policies and ethics