Skip to main content

Carbon Nanohorns in Drug Delivery and Medical Applications

  • Chapter
  • First Online:
Carbon Nanostructures in Biomedical Applications

Part of the book series: Advances in Material Research and Technology ((AMRT))

  • 233 Accesses

Abstract

In 1999, Iijima discovered a new component named Carbon nanohorns (CNHs) or Single walled carbon nanohorns (SWCNHs) along with other carbon nanostructures such as carbon nanotubes, fullerenes, and graphene. CNHs are ~25 nm-diameter, 40–50 nm-long sp2-bonded carbon atom cages. Their tight cage construction with elongated structure makes them a high-aspect-ratio fullerene subclass and a good comparison with single-walled carbon nanotubes. These nanohorns having range of applications like energy conversion, gas storage, super-capacitors, biomedicine, and drug delivery. The mass production at room temperature and the absence of a potentially hazardous metal catalyst are advantages of carbon nanohorns over carbon nanotubes. Pentagons, hexagons, and heptagons make up nanohorns, providing them a wide spectrum of chemical properties. CNHs have special features that make them useful in a wide range of biological contexts due to their conical form and surface chemistry. The tip of CNHs can be chemically functionalized with certain ligands and other molecules to improve its hydrophilicity and stability, and the conical form may also aid entrap drugs or other chemical, bio-molecules and substances. CNHs, are extremely light absorbent, which makes them effective in phototherapy for a wide range of medical conditions possible. For the purposes of drug delivery and different medical applications, this chapter summarises the advancement of carbon nanohorns, including their properties, functionalization, and its possible potential in those fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ajima, K., Murakami, T., Mizoguchi, Y., Tsuchida, K., Ichihashi, T., Iijima, S., Yudasaka, M.: Enhancement of in vivo anticancer effects of cisplatin by incorporation inside single-wall carbon nanohorns. ACS Nano 2(10), 2057–2064 (2008). https://doi.org/10.1021/NN800395T/ASSET/IMAGES/NN800395T.SOCIAL.JPEG_V03

  2. Almeida, E.R., Dos Santos, H.F., Capriles, P.V.S.Z.: Carbon nanohorns as nanocontainers for cisplatin: insight into their interaction with the plasma membranes of normal and breast cancer cells. Phys. Chem. Chem. Phys. 23(30), 16376–16389 (2021). https://doi.org/10.1039/D1CP02015C

  3. Almeida, E.R., De Souza, L.A., De Almeida, W.B., Dos Santos, H.F.: Chemically modified carbon nanohorns as nanovectors of the cisplatin drug: a molecular dynamics study. J. Chem. Inf. Model. 60(2), 500–512 (2020). https://doi.org/10.1021/ACS.JCIM.9B00775/SUPPL_FILE/CI9B00775_SI_001.PDF

  4. An Wong, C.H., Sofer, Z., Kubešová, M., Kučera, J., Matějková, S., Pumera, M.: Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc. Natl. Acad. Sci. U. S. A. 111(38), 13774–13779 (2014). https://doi.org/10.1073/PNAS.1413389111

  5. Aryee, E., Dalai, A.K., Adjaye, J.: Functionalization and characterization of carbon nanohorns (CNHs) for hydrotreating of gas oils. Top. Catal. 57(6–9), 796–805 (2014). https://doi.org/10.1007/S11244-013-0236-6/FIGURES/8

  6. Azami, T., Kasuya, D., Yuge, R., Yudasaka, M., Iijima, S., Yoshitake, T., Kubo, Y.: Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112(5), 1330–1334 (2008). https://doi.org/10.1021/jp076365o

  7. Bandow, S., Kokai, F., Takahashi, K., Yudasaka, M., Iijima, S.: Unique magnetism observed in single-wall carbon nanohorns. Appl. Phys. A 73(3), 281–285 (2001). https://doi.org/10.1007/S003390100794

  8. Bekyarova, E., Kaneko, K., Yudasaka, M., Kasuya, D., Iijima, S., Huidobro, A., Rodriguez-Reinoso, F.: Controlled opening of single-wall carbon nanohorns by heat treatment in carbon dioxide. J. Phys. Chem. B 107(19), 4479–4484 (2003). https://doi.org/10.1021/JP026737N

  9. Cao, Y., Zhang, Y., Zhao, M.: Single-walled carbon nanohorns inhibit proliferation of conjunctival melanoma cell lines CRMM-1 and involved in energy metabolism. J. Nanosci. Nanotechnol. 15(2), 1821–1830 (2015). https://doi.org/10.1166/JNN.2015.9092.

  10. Chechetka, S.A., Yuba, E., Kono, K., Yudasaka, M., Bianco, A., Miyako, E.: Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew. Chem. Int. Ed. 55(22), 6476–6481 (2016). https://doi.org/10.1002/ANIE.201602453

  11. Chechetka, S.A., Zhang, M., Yudasaka, M., Miyako, E.: Physicochemically functionalized carbon nanohorns for multi-dimensional cancer elimination. Carbon 97, 45–53 (2016). https://doi.org/10.1016/J.CARBON.2015.05.077

  12. Chen, D., Wang, C., Jiang, F., Liu, Z., Shu, C., Wan, L.J.: In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system. J. Mater. Chem. B 2(29), 4726–4732 (2014). https://doi.org/10.1039/C4TB00249K

  13. Chen, D., Wang, C.C., Nie, X., Li, S., Li, R., Guan, M., Liu, Z., Chen, C., Wang, C.C., Shu, C., Wan, L.: Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv. Funct. Mater. 24(42), 6621–6628 (2014). https://doi.org/10.1002/ADFM.201401560

  14. Cioffi, C., Campidelli, S., Brunetti, F.G., Meneghetti, M., Prato, M.: Functionalisation of carbon nanohorns. Chem. Commun. (20), 2129–2131 (2006). https://doi.org/10.1039/B601176D

  15. Curcio, M., Cirillo, G., Saletta, F., Michniewicz, F., Nicoletta, F.P., Vittorio, O., Hampel, S., Iemma, F.: Carbon nanohorns as effective nanotherapeutics in cancer therapy. 7(1), 3 (2020). https://doi.org/10.3390/C7010003

  16. Doughty, A.C.V., Hoover, A.R., Layton, E., Murray, C.K., Howard, E.W., Chen, W.R.: Nanomaterial applications in photothermal therapy for cancer. Materials 12(5), 779 (2019). https://doi.org/10.3390/MA12050779

  17. Dutta, K., De, S., Das, B., Bera, S., Guria, B., Ali, M.S., Chattopadhyay, D.: Development of an efficient immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of cancer biomarker. ACS Biomater. Sci. Eng. 7(12), 5541–5554 (2021). https://doi.org/10.1021/ACSBIOMATERIALS.1C00753/SUPPL_FILE/AB1C00753_SI_001.PDF

  18. Fan, J., Yudasaka, M., Miyawaki, J., Ajima, K., Murata, K., Iijima, S.: Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen. J. Phys. Chem. B 110(4), 1587–1591 (2006). https://doi.org/10.1021/JP0538870

  19. Fang, D., Zhang, S., Dai, H., Lin, Y.: An ultrasensitive ratiometric electrochemiluminescence immunosensor combining photothermal amplification for ovarian cancer marker detection. Biosens. Bioelectron. 146, 111768 (2019). https://doi.org/10.1016/J.BIOS.2019.111768

  20. Gao, C., Dong, P., Lin, Z., Guo, X., Jiang, B.P., Ji, S., Liang, H., Shen, X.C.: Near-infrared light responsive imaging-guided photothermal and photodynamic synergistic therapy nanoplatform based on carbon nanohorns for efficient cancer treatment. 24(49), 12827–12837 (2018). https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1002/chem.201802611. Accessed 10 Apr 2022

  21. Gao, C., Jian, J., Lin, Z., Yu, Y.X., Jiang, B.P., Chen, H., Shen, X.C.: Hypericin-loaded carbon nanohorn hybrid for combined photodynamic and photothermal therapy in vivo. Langmuir [Preprint] (2019). https://doi.org/10.1021/ACS.LANGMUIR.9B00624/SUPPL_FILE/LA9B00624_SI_001.PDF

  22. Garaj, S., Thien-Nga, L., Gaal, R., Forró, L., Takahashi, K., Kokai, F., Yudasaka, M., Iijima, S., Iijima, S., Iijima, S.: Electronic properties of carbon nanohorns studied by ESR. Phys. Rev. B 62(24), 17115 (2000). https://doi.org/10.1103/PhysRevB.62.17115

  23. Guerra, J., Herrero, M.A., Carrión, B., Pérez-Martínez, F.C., Lucío, M., Rubio, N., Meneghetti, M., Prato, M., Ceña, V., Vázquez, E.: Carbon nanohorns functionalized with polyamidoamine dendrimers as efficient biocarrier materials for gene therapy. Carbon 50(8), 2832–2844 (2012). https://doi.org/10.1016/J.CARBON.2012.02.050

  24. Hirata, E., Miyako, E., Hanagata, N., Ushijima, N., Sakaguchi, N., Russier, J., Yudasaka, M., Iijima, S., Bianco, A., Yokoyama, A.: Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation. Nanoscale 8(30), 14514–14522 (2016). https://doi.org/10.1039/C6NR02756C

  25. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309(3–4), 165–170 (1999). https://doi.org/10.1016/S0009-2614(99)00642-9

  26. Isaac, K.M., Sabaraya, I.V., Ghousifam, N., Das, D., Pekkanen, A.M., Romanovicz, D.K., Long, T.E., Saleh, N.B., Rylander, M.N.: Functionalization of single-walled carbon nanohorns for simultaneous fluorescence imaging and cisplatin delivery in vitro. Carbon 138, 309–318 (2018). https://doi.org/10.1016/J.CARBON.2018.06.020

  27. Jiang, B.P., Hu, L.F., Shen, X.C., Ji, S.C., Shi, Z., Liu, C.J., Zhang, L., Liang, H.: One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl. Mater. Interfaces 6(20), 18008–18017 (2014). https://doi.org/10.1021/AM504860C/SUPPL_FILE/AM504860C_SI_001.PDF

  28. Karousis, N., Suarez-Martinez, I., Ewels, C.P., Tagmatarchis, N.: Structure, Properties, Functionalization, and Applications of Carbon Nanohorns, Chemical Reviews. American Chemical Society (2016). https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acs.chemrev.5b00611. Accessed 25 Apr 2022

  29. Kasai, T., Matsumura, S., Iizuka, T., Shiba, K., Kanamori, T., Yudasaka, M., Iijima, S., Yokoyama, A.: Carbon nanohorns accelerate bone regeneration in rat calvarial bone defect. Nanotechnology 22(6), 065102 (2011). https://doi.org/10.1088/0957-4484/22/6/065102

  30. Kasuya, D., Yudasaka, M., Takahashi, K., Kokai, F., Iijima, S.: Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J. Phys. Chem. B 106(19), 4947–4951 (2002). https://doi.org/10.1021/JP020387N

  31. Lammert, P.E., Crespi, V.H.: Graphene cones: classification by fictitious flux and electronic properties. 69(3) (2004). https://doi.org/10.1103/PhysRevB.69.035406

  32. Li, B., Chen, X., Yang, W., He, J., He, K., Xia, Z., Zhang, J., Xiang, G.: Single-walled carbon nanohorn aggregates promotes mitochondrial dysfunction-induced apoptosis in hepatoblastoma cells by targeting SIRT3. Int. J. Oncol. 53(3), 1129–1137 (2018). https://doi.org/10.3892/IJO.2018.4459/HTML

  33. Li, J., He, Z., Guo, C., Wang, L., Xu, S.: Synthesis of carbon nanohorns/chitosan/quantum dots nanocomposite and its applications in cells labeling and in vivo imaging. J. Lumin. 145, 74–80 (2014). https://doi.org/10.1016/J.JLUMIN.2013.06.036

  34. Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., Xu, S.: Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon 48(5), 1580–1585 (2010). https://doi.org/10.1016/j.carbon.2009.12.055

  35. Li, N., Zhao, Q., Shu, C., Ma, X., Li, R., Shen, H., Zhong, W.: Targeted killing of cancer cells in vivo and in vitro with IGF-IR antibody-directed carbon nanohorns based drug delivery. Int. J. Pharm. 478(2), 644–654 (2015). https://doi.org/10.1016/J.IJPHARM.2014.12.015

  36. Li, Y., Zhang, J., Zhao, M., Shi, Z., Chen, X., He, X., Han, N., Xu, R.: Single-wall carbon nanohorns (SWNHs) inhibited proliferation of human glioma cells and promoted its apoptosis. J. Nanoparticle Res. 15(8), 1–12 (2013). https://doi.org/10.1007/S11051-013-1861-5/FIGURES/8

  37. Lin, Z., Jiang, B.P., Liang, J., Wen, C., Shen, X.C.: Phycocyanin functionalized single-walled carbon nanohorns hybrid for near-infrared light-mediated cancer phototheranostics. Carbon 143, 814–827 (2019). https://doi.org/10.1016/J.CARBON.2018.12.011

  38. Liu, X., Shi, L., Niu, W., Li, H., Xu, G.: Amperometric glucose biosensor based on single-walled carbon nanohorns. Biosens. Bioelectron. 23(12), 1887–1890 (2008). https://doi.org/10.1016/J.BIOS.2008.02.016

  39. Lucío, M.I., Opri, R., Pinto, M., Scarsi, A., Fierro, J.L.G., Meneghetti, M., Fracasso, G., Prato, M., Vázquez, E., Herrero, M.A.: Targeted killing of prostate cancer cells using antibody-drug conjugated carbon nanohorns. J. Mater. Chem. B 5(44), 8821–8832 (2017). https://doi.org/10.1039/c7tb02464a

  40. Ma, X., Shu, C., Guo, J., Pang, L., Su, L., Fu, D., Zhong, W.: Targeted cancer therapy based on single-wall carbon nanohorns with doxorubicin in vitro and in vivo. J. Nanoparticle Res. 16(7), 1–14 (2014). https://doi.org/10.1007/S11051-014-2497-9/FIGURES/9

  41. Maeda, Y., Hirata, E., Takano, Y., Sakaguchi, N., Ushijima, N., Saeki, A., Kimura, S., Shibata, K. ichiro, Yudasaka, M., Yokoyama, A.: Stable aqueous dispersions of carbon nanohorns loaded with minocycline and exhibiting antibacterial activity. Carbon 166, 36–45 (2020). https://doi.org/10.1016/J.CARBON.2020.04.040

  42. Matsumura, S., Sato, S., Yudasaka, M., Tomida, A., Tsuruo, T., Iijima, S., Shiba, K.: Prevention of carbon nanohorn agglomeration using a conjugate composed of comb-shaped polyethylene glycol and a peptide aptamer. Mol. Pharm. 6(2), 441–447 (2009). https://doi.org/10.1021/mp800141v

  43. Miller, J.D., Baron, E.D., Scull, H., Hsia, A., Berlin, J.C., McCormick, T., Colussi, V., Kenney, M.E., Cooper, K.D., Oleinick, N.L.: Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinical-translational studies. Toxicol. Appl. Pharmacol. 224(3), 290 (2007). https://doi.org/10.1016/J.TAAP.2007.01.025

  44. Miyako, E., Deguchi, T., Nakajima, Y., Yudasaka, M., Hagihara, Y., Horie, M., Shichiri, M., Higuchi, Y., Yamashita, F., Hashida, M., Shigeri, Y., Yoshida, Y., Iijima, S.: Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns. Proc. Natl. Acad. Sci. U. S. A. 109(19), 7523–7528 (2012). https://doi.org/10.1073/pnas.1204391109

  45. Miyako, E., Nagata, H., Hirano, K., Sakamoto, K., Makita, Y., Nakayama, K.I., Hirotsu, T.: Photoinduced antiviral carbon nanohorns. Nanotechnology 19(7), 075106 (2008). https://doi.org/10.1088/0957-4484/19/7/075106

  46. Miyako, E., Russier, J., Mauro, M., Cebrian, C., Yawo, H., Ménard-Moyon, C., Hutchison, J.A., Yudasaka, M., Iijima, S., De Cola, L., Bianco, A.: Photofunctional nanomodulators for bioexcitation. Angew. Chem. 126(48), 13337–13341 (2014). https://doi.org/10.1002/ANGE.201407169

  47. Miyawaki, J., Yudasaka, M., Azami, T., Kubo, Y., Iijima, S.: Toxicity of single-walled carbon nanohorns. ACS Nano 2(2), 213–226 (2008). https://doi.org/10.1021/NN700185T/SUPPL_FILE/NN700185T-FILE001.PDF

  48. Miyawaki, J., Yudasaka, M., Imai, H., Yorimitsu, H., Isobe, H., Nakamura, E., Iijima, S.: In vivo magnetic resonance imaging of single-walled carbon nanohorns by labeling with magnetite nanoparticles. Adv. Mater. 18(8), 1010–1014 (2006). https://doi.org/10.1002/ADMA.200502174

  49. Miyawaki, J., Yudasaka, M., Imai, H., Yorimitsu, H., Isobe, H., Nakamura, E., Iijima, S.: Synthesis of ultrafine Gd2O3 nanoparticles inside single-wall carbon nanohorns. J. Phys. Chem. B 110(11), 5179–5181 (2006). https://doi.org/10.1021/JP0607622/SUPPL_FILE/JP0607622SI20060210_124736.PDF

  50. Moreno-Lanceta, A., Medrano-Bosch, M., Melgar-Lesmes, P.: Single-walled carbon nanohorns as promising nanotube-derived delivery systems to treat cancer. Pharmaceutics 12(9), 1–21 (2020). https://doi.org/10.3390/PHARMACEUTICS12090850

  51. Muñiz, J., Sansores, E., Olea, A., Valenzuela, E.: The role of aromaticity on the building of nanohybrid materials functionalized with metalated (Au(III), Ag(III), Cu(III)) extended porphyrins and single-walled carbon nanohorns: a theoretical study. Int. J. Quantum Chem. 113(7), 1034–1046 (2013). https://doi.org/10.1002/QUA.24121

  52. Murakami, T., Ajima, K., Miyawaki, J., Yudasaka, M., Iijima, S., Shiba, K.: Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol. Pharm. 1(6), 399–405 (2004). https://doi.org/10.1021/MP049928E/ASSET/IMAGES/MP049928E.SOCIAL.JPEG_V03

  53. Murakami, T., Sawada, H., Tamura, G., Yudasaka, M., Iijima, S., Tsuchida, K.: Water-dispersed single-wall carbon nanohorns as drug carriers for local cancer chemotherapy. Nanomedicine 3(4), 453–463 (2008). https://doi.org/10.2217/17435889.3.4.453

  54. Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M., Iijima, S.: Pore structure of single-wall carbon nanohorn aggregates. Chem. Phys. Lett. 331(1), 14–20 (2000). https://doi.org/10.1016/S0009-2614(00)01152-0

  55. Murata, K., Kaneko, K., Steele, W.A., Kokai, F., Takahashi, K., Kasuya, D., Hirahara, K., Yudasaka, M., Iijima, S.: Molecular potential structures of heat-treated single-wall carbon nanohorn assemblies. J. Phys. Chem. B 105(42), 10210–10216 (2001). https://doi.org/10.1021/JP010754F

  56. Nakamura, M., Tahara, Y., Ikehara, Y., Murakami, T., Tsuchida, K., Iijima, S., Waga, I., Yudasaka, M.: Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22(46) (2011). https://doi.org/10.1088/0957-4484/22/46/465102

  57. NEC: NEC carbon nanohorns. 125–129 (2002). https://www.nec.com/en/global/prod/cnh/index.html. Accessed 26 Apr 2022

  58. Ojeda, I., Garcinuño, B., Moreno-Guzmán, M., González-Cortés, A., Yudasaka, M., Iijima, S., Langa, F., Yáñez-Sedeño, P., Pingarrón, J.M.: Carbon nanohorns as a scaffold for the construction of disposable electrochemical immunosensing platforms. Application to the determination of fibrinogen in human plasma and urine. Anal. Chem. 86(15), 7749–7756 (2014). https://doi.org/10.1021/AC501681N/SUPPL_FILE/AC501681N_SI_001.PDF

  59. Pagona, G., Karousis, N., Tagmatarchis, N.: Aryl diazonium functionalization of carbon nanohorns. Carbon 46(4), 604–610 (2008). https://doi.org/10.1016/J.CARBON.2008.01.007

  60. Pagona, G., Mountrichas, G., Rotas, G., Karousis, N., Pispas, S., Tagmatarchis, N.: Properties, applications and functionalisation of carbon nanohorns. Int. J. Nanotechnol. 6(1–2), 176–195 (2009). https://doi.org/10.1504/IJNT.2009.021715

  61. Pagona, G., Tagmatarchis, N., Fan, J., Yudasaka, M., Iijima, S.: Cone-end functionalization of carbon nanohorns. Chem. Mater. 18(17), 3918–3920 (2006). https://doi.org/10.1021/CM0604864/SUPPL_FILE/CM0604864SI20060717_110043.PDF

  62. Pagura, C., Barison, S., Mortalò, C., Comisso, N., Schiavon, M.: Large scale and low cost production of pristine and oxidized Single Wall Carbon Nanohorns as material for hydrogen storage. Nanosci. Nanotechnol. Lett. 4(2), 160–164 (2012). https://doi.org/10.1166/NNL.2012.1308

  63. Parasuraman, P.S., Parasuraman, V.R., Anbazhagan, R., Tsai, H.C., Lai, J.Y.: Synthesis of “Dahlia-Like” hydrophilic fluorescent carbon nanohorn as a bio-imaging PROBE. Int. J. Mol. Sci. 20(12), 2977 (2019). https://doi.org/10.3390/IJMS20122977

  64. Sandanayaka, A.S.D., Ito, O., Zhang, M., Ajima, K., Iijima, S., Yudasaka, M., Murakami, T., Tsuchida, K.: Photoinduced electron transfer in zinc phthalocyanine loaded on single-walled carbon nanohorns in aqueous solution. Adv. Mater. 21(43), 4366–4371 (2009). https://doi.org/10.1002/ADMA.200901256

  65. Sano, N.: Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection. J. Phys. D Appl. Phys. 37(8), L17 (2004). https://doi.org/10.1088/0022-3727/37/8/L01

  66. Schramm, F., Lange, M., Hoppmann, P., Heutelbeck, A.: Cytotoxicity of carbon nanohorns in different human cells of the respiratory system. J. Toxicol. Environ. Health-Part A Curr. Issues 79(22–23), 1085–1093 (2016). https://doi.org/10.1080/15287394.2016.1219594

  67. Shi, L., Liu, X., Niu, W., Li, H., Han, S., Chen, J., Xu, G.: Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24(5), 1159–1163 (2009). https://doi.org/10.1016/J.BIOS.2008.07.001

  68. Stankova, L., Fraczek-Szczypta, A., Blazewicz, M., Filova, E., Blazewicz, S., Lisa, V., Bacakova, L.: Human osteoblast-like MG 63 cells on polysulfone modified with carbon nanotubes or carbon nanohorns. Carbon 67, 578–591 (2014). https://doi.org/10.1016/J.CARBON.2013.10.031

  69. Stergiou, A., Tagmatarchis, N.: Functionalized carbon nanohorns as drug delivery platforms. Methods in Molecular Biology, vol. 2207, pp. 13–24. Clifton, N.J. (2021). https://doi.org/10.1007/978-1-0716-0920-0_2

  70. Su, C.-H., Soendoro, A., Okayama, S., Rahmania, F.J., Nagai, T., Imae, T., Tsutsumiuchi, K., Kawai, N.: Drug release stimulated by magnetic field and light on magnetite- and carbon dot-loaded carbon nanohorn. Bull. Chem. Soc. Jpn. 95(4), 582–594 (2022). https://doi.org/10.1246/bcsj.20210436

  71. Tahara, Y., Miyawaki, J., Zhang, M., Yang, M., Waga, I., Iijima, S., Irie, H., Yudasaka, M.: Histological assessments for toxicity and functionalization-dependent biodistribution ofcarbon nanohorns. Nanotechnology 22(26), 265106 (2011). https://doi.org/10.1088/0957-4484/22/26/265106

  72. Takada, S., Hirata, E., Sakairi, M., Miyako, E., Takano, Y., Ushijima, N., Yudasaka, M., Iijima, S., Yokoyama, A.: Carbon nanohorn coating by electrodeposition accelerate bone formation on titanium implant. Artif. Cells Nanomedicine Biotechnol. 49(1), 20–29 (2021). https://doi.org/10.1080/21691401.2020.1865388

  73. Tsang, S.C., Harris, P.J.F., Claridge, J.B., Green, M.L.H.: A microporous carbon produced by arc-evaporation. J. Chem. Soc., Chem. Commun. (19), 1519–1522 (1993). https://doi.org/10.1039/C39930001519

  74. Urita, K., Seki, S., Utsumi, S., Noguchi, D., Kanoh, H., Tanaka, H., Hattori, Y., Ochiai, Y., Aoki, N., Yudasaka, M., Iijima, S., Kaneko, K.: Effects of gas adsorption on the electrical conductivity of single-wall carbon nanohorns. Nano Lett. 6(7), 1325–1328 (2006). https://doi.org/10.1021/NL060120Q/SUPPL_FILE/NL060120QSI20060421_082835.PDF

  75. US7125525B2—Device and method for production of carbon nanotubes, fullerene and their derivatives—Google Patents (no date). https://patents.google.com/patent/US7125525B2/en. Accessed 26 Apr 2022

  76. Utsumi, S., Urita, K., Kanoh, H., Yudasaka, M., Suenaga, K., Iijima, S., Kaneko, K.: Preparing a magnetically responsive single-wall carbon nanohorn colloid by anchoring magnetite nanoparticles. J. Phys. Chem. B 110(14), 7165–7170 (2006). https://doi.org/10.1021/JP0569640

  77. Vasu, K., Pramoda, K., Moses, K., Govindaraj, A., Rao, C.N.R.: Single-walled nanohorns and other nanocarbons generated by submerged arc discharge between carbon electrodes in liquid argon and other media. Mater. Res. Express 1(1), 015001 (2013). https://doi.org/10.1088/2053-1591/1/1/015001

  78. Wang, H., Chhowalla, M., Sano, N., Jia, S., Amaratunga, G.A.J.: Large-scale synthesis of single-walled carbon nanohorns by submerged arc. Nanotechnology 15(5), 546 (2004). https://doi.org/10.1088/0957-4484/15/5/024

  79. Wang, J., Wang, R., Zhang, F., Yin, Y., Mei, L., Song, F., Tao, M., Yue, W., Zhong, W.: Overcoming multidrug resistance by a combination of chemotherapy and photothermal therapy mediated by carbon nanohorns. J. Mater. Chem. B 4(36), 6043–6051 (2016). https://doi.org/10.1039/C6TB01469K

  80. Wang, R., Cui, H., Wang, J., Li, N., Zhao, Q., Zhou, Y., Lv, Z., Zhong, W.: Enhancing the antitumor effect of methotrexate in intro and in vivo by a novel targeted single-walled carbon nanohorn-based drug delivery system. RSC Adv. 6(53), 47272–47280 (2016). https://doi.org/10.1039/C6RA06667D

  81. Whitney, J.R., Sarkar, S., Zhang, J., Do, T., Young, T., Manson, M.K., Campbell, T.A., Puretzky, A.A., Rouleau, C.M., More, K.L., Geohegan, D.B., Rylander, C.G., Dorn, H.C., Rylander, M.N.: Single walled carbon nanohorns as photothermal cancer agents. Lasers Surg. Med. 43(1), 43–51 (2011). https://doi.org/10.1002/LSM.21025

  82. Xu, J., Sumio, I., Yudasaka, M., Iijima, S., Yudasaka, M.: Appropriate PEG compounds for dispersion of single wall carbon nanohorns in salted aqueous solution. Appl. Phys. A 99(1), 15–21 (2010). https://doi.org/10.1007/S00339-010-5582-7

  83. Yamaguchi, T., Bandow, S., Iijima, S.: Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods. Chem. Phys. Lett. 389(1–3), 181–185 (2004). https://doi.org/10.1016/J.CPLETT.2004.03.068

  84. Yamaguchi, T., Bandow, S., Iijima, S.: Origin of giant graphite balls produced together with carbon nanohorns prepared by pulsed arc-discharge and a method for their removal. Carbon 7(46), 1110 (2008). https://doi.org/10.1016/J.CARBON.2008.04.005

  85. Yang, C.M., Kasuya, D., Yudasaka, M., Iijima, S., Kaneko, K.: Microporosity development of single-wall carbon nanohorn with chemically induced coalescence of the assembly structure. J. Phys. Chem. B 108(46), 17775–17782 (2004). https://doi.org/10.1021/JP048391H

  86. Yang, C.M., Noguchi, H., Murata, K., Yudasaka, M., Hashimoto, A., Iijima, S., Kaneko, K.: Highly ultramicroporous single-walled carbon nanohorn assemblies. Adv. Mater. 17(7), 866–870 (2005). https://doi.org/10.1002/ADMA.200400712

  87. Yang, F., Han, J., Zhuo, Y., Yang, Z., Chai, Y., Yuan, R.: Highly sensitive impedimetric immunosensor based on single-walled carbon nanohorns as labels and bienzyme biocatalyzed precipitation as enhancer for cancer biomarker detection. Biosens. Bioelectron. 55, 360–365 (2014). https://doi.org/10.1016/J.BIOS.2013.12.040

  88. Yang, J., Su, H., Sun, W., Cai, J., Liu, S., Chai, Y., Zhang, C.: Dual chemodrug-loaded single-walled carbon nanohorns for multimodal imaging-guided chemo-photothermal therapy of tumors and lung metastases. Theranostics 8(7), 1966–1984 (2018a). https://doi.org/10.7150/THNO.23848

  89. Yang, M., Wada, M., Zhang, M., Kostarelos, K., Yuge, R., Iijima, S., Masuda, M., Yudasaka, M.: A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid–poly(ethylene glycol) and macrophage uptake. Acta Biomater. 9(1), 4744–4753 (2013). https://doi.org/10.1016/J.ACTBIO.2012.09.012

  90. Yang, X., He, J., Li, B., Zhang, J., He, K., Duan, X., Huang, R., Xiang, G.: SWNHs (Single-Wall Carbon Nanohorns) supervises endoplasmic reticulum (ER) stress in hepatocellular carcinoma. J. Nanosci. Nanotechnol. 18(10), 6740–6745 (2018b). https://doi.org/10.1166/JNN.2018.15457

  91. Yuge, R., Bandow, S., Nakahara, K., Yudasaka, M., Toyama, K., Yamaguchi, T., Iijima, S., Manako, T.: Structure and electronic states of single-wall carbon nanohorns prepared under nitrogen atmosphere. Carbon 75, 322–326 (2014). https://doi.org/10.1016/J.CARBON.2014.04.010

  92. Yuge, R., Ichihashi, T., Miyawaki, J., Yoshitake, T., Iijima, S., Yudasaka, M.: Hidden caves in an aggregate of single-wall carbon nanohorns found by using Gd2O3 probes. J. Phys. Chem. C 113(7), 2741–2744 (2009). https://doi.org/10.1021/JP810121A

  93. Zhang, J., Ge, J., Shultz, M.D., Chung, E., Singh, G., Shu, C., Fatouros, P.P., Henderson, S.C., Corwin, F.D., Geohegan, D.B., Puretzky, A.A., Rouleau, C.M., More, K., Rylander, C., Rylander, M.N., Gibson, H.W., Dorn, H.C.: In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots. Nano Lett. 10(8), 2843–2848 (2010). https://doi.org/10.1021/NL1008635/SUPPL_FILE/NL1008635_SI_001.PDF

  94. Zhang, J., Lei, J., Xu, C., Ding, L., Ju, H.: Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal. Chem. 82(3), 1117–1122 (2010). https://doi.org/10.1021/AC902914R

  95. Zhang, J., Sun, Q., Bo, J., Huang, R., Zhang, M., Xia, Z., Ju, L., Xiang, G.: Single-walled carbon nanohorn (SWNH) aggregates inhibited proliferation of human liver cell lines and promoted apoptosis, especially for hepatoma cell lines. Int. J. Nanomedicine 9(1), 759–773 (2014). https://doi.org/10.2147/IJN.S56353

  96. Zhang, M., Murakami, T., Ajima, K., Tsuchida, K., Sandanayaka, A.S.D., Ito, O., Iijima, S., Yudasaka, M.: Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy. Proc. Natl. Acad. Sci. U. S. A. 105(39), 14773–14778 (2008). https://doi.org/10.1073/PNAS.0801349105/SUPPL_FILE/0801349105SI.PDF

  97. Zhang, M., Yamaguchi, T., Iijima, S., Yudasaka, M.: Size-dependent biodistribution of carbon nanohorns in vivo. Nanomedicine Nanotechnol. Biol. Med. 9(5), 657–664 (2013). https://doi.org/10.1016/j.nano.2012.11.011

  98. Zhang, M., Yang, M., Bussy, C., Iijima, S., Kostarelos, K., Yudasaka, M.: Biodegradation of carbon nanohorns in macrophage cells. Nanoscale 7(7), 2834–2840 (2015). https://doi.org/10.1039/C4NR06175F

  99. Zhang, M., Yudasaka, M.: Carbon nanohorns and their high potential in biological applications. In: Carbon Nanostructures, pp. 77–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28782-9_3

  100. Zhang, M., Yudasaka, M., Ajima, K., Miyawaki, J., Iijima, S.: ‘Light-assisted oxidation of single-wall carbon nanohorns for abundant creation of oxygenated groups that enable Chemical modifications with proteins to enhance biocompatibility. ACS Nano 1(4), 265–272 (2007). https://doi.org/10.1021/NN700130F/SUPPL_FILE/NN700130F-FILE002.PDF

  101. Zhao, S., Wang, T., Wang, L., Xu, S.: A non-enzymatic glucose amperometric biosensor based on a simple one-step electrodeposition of Cu microdendrites onto single-walled carbon nanohorn-modified electrode. J. Solid State Electrochem. 19(3), 831–839 (2015). https://doi.org/10.1007/S10008-014-2688-4/TABLES/1

  102. Zhu, S., Liu, Z., Hu, L., Yuan, Y., Xu, G.: Turn-on fluorescence sensor based on single-walled-carbon-nanohorn–peptide complex for the detection of thrombin. Chem. Eur. J. 18(51), 16556–16561 (2012). https://doi.org/10.1002/CHEM.201201468

  103. Zhu, S., Xu, G.: Single-walled carbon nanohorns and their applications. Nanoscale 2(12), 2538–2549 (2010). https://doi.org/10.1039/C0NR00387E

  104. Zimmermann, K.A., Inglefield, D.L., Zhang, J., Dorn, H.C., Long, T.E., Rylander, C.G., Rylander, M.N.: Single-walled carbon nanohorns decorated with semiconductor quantum dots to evaluate intracellular transport. J. Nanoparticle Res. 16(1), 1–18 (2014). https://doi.org/10.1007/S11051-013-2078-3/FIGURES/9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abimanyu Sugumaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, G., Guha, N., Sugumaran, A., Kamaruz Zaman, M. (2023). Carbon Nanohorns in Drug Delivery and Medical Applications. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Carbon Nanostructures in Biomedical Applications. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28263-8_4

Download citation

Publish with us

Policies and ethics