Skip to main content

Spatio-Temporal Changes of Rainfall Pattern Under Changing Climate in West Bengal, India

  • Chapter
  • First Online:
Climate Change, Agriculture and Society

Abstract

The study of rainfall variability is essential to the environmental researcher as it influences the agricultural-based economy like West Bengal. The primary aim of this research paper is to assess the inconsistent nature of the annual and seasonal rainfall of West Bengal. The 110 years (1901–2010) data of 18 meteorological stations of West Bengal are used in this study. The nonparametric Mann–Kendall (MK), modified Mann–Kendall (mMK), and Sen’s slope estimator (Q) are used to detect the trend and magnitude of the trend. Furthermore, the sub-trends of the data series are estimated using the innovative trend analysis (ITA) method. The percent bias (PBIAS) method is also used to compare the second half with the first half of the data series. The results of the ITA showed Alipore (2.64) and Balurghat (Q = −2.17) had a maximum increasing and a decreasing trend in the annual rainfall. On the seasonal, summer (56%) and post-monsoon (100%) seasons are dominated by increasing trends, while decreasing trends dominate monsoon (61%) and winter (56%) seasons. The results of the MK/mMK and PBIAS, more or less similar to the ITA, confirm its reliability for trend detection. The findings of this study can provide a proper way to develop future projects, as it can clarify the reliable information about the rainfall variability throughout the year and can also afford a power of sustain for water resources and agricultural development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, I., Zhang, F., Tayyab, M., Anjum, M. N., Zaman, M., Liu, J., ... & Saddique, Q. (2018). Spatiotemporal analysis of precipitation variability in annual, seasonal, and extreme values over upper Indus River basin. Atmospheric Research213, 346–360.

    Google Scholar 

  • Al Mamun, M. A., Sakiur Rahman, A. T. M., Shabee, M. S. S. A., Das, J., Monirul Alam, G. M., Rahman, M. M., Kamruzzaman, Md., & Bhattacharya, S. K. (2023). Effects of climatic hazards on agriculture in the teesta basin of Bangladesh. In Monitoring and managing multi-hazards a multidisciplinary approach (pp. 81–96). Cham: Springer International Publishing.

    Google Scholar 

  • Alam, J., Saha, P., Mitra, R., & Das, J. (2023). Investigation of spatio-temporal variability of meteorological drought in the Luni River Basin Rajasthan India. Arabian Journal of Geosciences, 16(3). https://doi.org/10.1007/s12517-023-11290-8

  • Anderson, R. L. (1942). Distribution of the serial correlation coefficient. The Annals of Mathematical Statistics, 13(1), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Ay, M., & Kisi, O. (2015). Investigation of trend analysis of monthly total precipitation by an innovative method. Theoretical and Applied Climatology, 120(3), 617–629.

    Article  ADS  Google Scholar 

  • Basak, A., Das, J., Sakiur Rahman, A. T. M., & Pham, Q. B. (2021). An integrated approach for delineating and characterizing groundwater depletion hotspots in a coastal state of India. Journal of the Geological Society of India, 97(11), 1429–1440. https://doi.org/10.1007/s12594-021-1883-z

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2010). Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(4), 535–548.

    Article  ADS  Google Scholar 

  • Chaouche, K., Neppel, L., Dieulin, C., Pujol, N., Ladouche, B., Martin, E., ... & Caballero, Y. (2010). Analyses of precipitation, temperature and evapotranspiration in a French Mediterranean region in the context of climate change. Comptes Rendus Geoscience342(3), 234–243.

    Google Scholar 

  • Chen, P. C., Wang, Y. H., You, G. J. Y., & Wei, C. C. (2017). Comparison of methods for nonstationary hydrologic frequency analysis: A case study using annual maximum daily precipitation in Taiwan. Journal of Hydrology, 545, 197–211.

    Article  ADS  Google Scholar 

  • Cui, L., Wang, L., Lai, Z., Tian, Q., Liu, W., & Li, J. (2017). Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015. Journal of Atmospheric and Solar-Terrestrial Physics, 164, 48–59.

    Article  ADS  Google Scholar 

  • Das, J., & Bhattacharya, S. K. (2018). Trend analysis of long-term climatic parameters in Dinhata of Koch Bihar district West Bengal. Spatial Information Research, 26(3), 271–280. https://doi.org/10.1007/s41324-018-0173-3

  • Das, J., Mandal, T., Saha, P. (2019). Spatio-temporal trend and change point detection of winter temperature of North Bengal India. Spatial Information Research, 27(4), 411–424. https://doi.org/10.1007/s41324-019-00241-9

  • Das, J., Gayen, A., Saha, P., & Bhattacharya, S. K. (2020a). Meteorological drought analysis using Standardized Precipitation Index over Luni River Basin in Rajasthan India. SN Applied Sciences, 2(9). https://doi.org/10.1007/s42452-020-03321-w

  • Das, J., Mandal, T., Saha, P., & Bhattacharya, S. K. (2020b). Variability and trends of rainfall using non-parametric approaches: A case study of semi-arid area. MAUSAM, 71(1), 33–44. https://doi.org/10.54302/mausam.v71i1

  • Das, J., Rahman, A. S., Mandal, T., & Saha, P. (2020c). Challenges of sustainable groundwater management for large scale irrigation under changing climate in lower Ganga river basin in India. Groundwater for Sustainable Development, 11100449. https://doi.org/10.1016/j.gsd.2020.100449

  • Das, J., Sakiur Rahman, A. T. M., Mandal, T., & Saha, P. (2021a). Exploring driving forces of large-scale unsustainable groundwater development for irrigation in lower Ganga River basin in India. Environment Development and Sustainability, 23(5), 7289–7309. https://doi.org/10.1007/s10668-020-00917-5

  • Das, J., Mandal, T., Sakiur Rahman, A. T. M., & Saha, P. (2021b). Spatio-temporal characterization of rainfall in Bangladesh: An innovative trend and discrete wavelet transformation approaches. Theoretical and Applied Climatology, 143(3–4), 1557–1579. https://doi.org/10.1007/s00704-020-03508-6

  • Dore, M. H. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167–1181.

    Article  PubMed  Google Scholar 

  • Gadgil, S., Rajeevan, M., & Francis, P. A. (2007). Monsoon variability: Links to major oscillations over the equatorial Pacific and Indian oceans. Current Science, 93(2), 182–194.

    Google Scholar 

  • Ghosh, S., Luniya, V., & Gupta, A. (2009). Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmospheric Science Letters, 10(4), 285–290.

    Google Scholar 

  • Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. John Wiley & Sons.

    Google Scholar 

  • Gosain, A. K., Rao, S., & Basuray, D. (2006). Climate change impact assessment on the hydrology of Indian river basins. Current Science, 346–353.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC). (2012). Managing the risk of extreme events and disasters to advance climate change adaptation, A Special report of working groups I and II of the Intergovernmental Panel on Climate Change, Cambridge University Press, New York, NY.

    Google Scholar 

  • Jain, S. K., Kumar, V., & Saharia, M. (2013). Analysis of rainfall and temperature trends in northeast India. International Journal of Climatology, 33(4), 968–978.

    Article  ADS  Google Scholar 

  • Joshi, V., & Kumar, K. (2006). Extreme rainfall events and associated natural hazards in Alaknanda valley, Indian Himalayan region. Journal of Mountain Science, 3(3), 228–236.

    Article  Google Scholar 

  • Kalra, N., Chakraborty, D., Sharma, A., Rai, H. K., Jolly, M., Chander, S., ... & Sehgal, M. (2008). Effect of increasing temperature on yield of some winter crops in northwest India. Current Science, 82–88.

    Google Scholar 

  • Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93.

    Article  MATH  Google Scholar 

  • Kendall, M. G., & Gibbons, J. D. (1975). Rank correlation methods, 1970. Griffin.

    Google Scholar 

  • Kisi, O., & Ay, M. (2014). Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. Journal of Hydrology, 513, 362–375.

    Article  ADS  CAS  Google Scholar 

  • Kumar, V., & Jain, S. K. (2011). Trends in rainfall amount and number of rainy days in river basins of India (1951–2004). Hydrology Research, 42(4), 290–306.

    Article  Google Scholar 

  • Lal, M. (2000). Climatic change-implications for India’s water resources. Journal of Social and Economic Development, 3, 57–87.

    ADS  Google Scholar 

  • Lee, S. K., & Dang, T. A. (2020). Extreme rainfall trends over the Mekong Delta under the impacts of climate change. International Journal of Climate Change Strategies and Management.

    Google Scholar 

  • Mallik, P., & Ghosh, T. (2021). Impact of climate on tea production: A study of the Dooars Region in India.

    Google Scholar 

  • Mandal, T., Das, J., Rahman, A. S., & Saha, P. (2021). Rainfall insight in Bangladesh and India: Climate change and environmental perspective. In Habitat, Ecology and Ekistics (pp. 53–74). Springer, Cham.

    Google Scholar 

  • Mandal, T., Sarkar, A., Das, J., Sakiur Rahman, A. T. M., Chouhan, P., Nazrul, Md., André, I., & Amstel, V. (2021a). Comparison of classical Mann–Kendal test and graphical innovative trend analysis for analyzing rainfall changes in India. In India: Climate change impacts mitigation and adaptation in developing countries (pp. 155–183). Cham: Springer International Publishing.

    Google Scholar 

  • Mandal, T., Das, J., Sakiur Rahman, A. T. M., Saha, P., Rukhsana, Anwesha, H., Asraful, A., & Lakshminarayan, S. (2021b). Rainfall insight in Bangladesh and India: Climate change and environmental perspective. In Habitat ecology and ekistics case studies of human-environment interactions in India (pp. 53–74). Cham: Springer International Publishing.

    Google Scholar 

  • Mann, B. H. (1945). Non-Parametric test against trend. Econometrica13.

    Google Scholar 

  • Mondal, A., Kundu, S., & Mukhopadhyay, A. (2012). Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. International Journal of Geology, Earth and Environmental Sciences, 2(1), 70–78.

    Google Scholar 

  • Mukherjee, K. (2017). Trend analysis of rainfall in the Districts of West Bengal, India, a study for the last century. Journal of Engineering Computers & Applied Sciences (JECAS), 6(1), 1–12.

    CAS  Google Scholar 

  • Nandargi, S. S., & Barman, K. (2018). Evaluation of climate change impact on rainfall variation in West Bengal.

    Google Scholar 

  • Pal, S., Mazumdar, D., & Chakraborty, P. K. (2015). District-wise trend analysis of rainfall pattern in last century (1901–2000) over Gangetic region in West Bengal, India. Journal of Applied and Natural Science, 7(2), 750–757.

    Article  CAS  Google Scholar 

  • Patle, G. T., & Libang, A. (2014). Trend analysis of annual and seasonal rainfall to climate variability in North-East region of India. Journal of Applied and Natural Science, 6(2), 480–483.

    Article  Google Scholar 

  • Pingale, S. M., Khare, D., Jat, M. K., & Adamowski, J. (2014). Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research, 138, 73–90.

    Article  ADS  Google Scholar 

  • Sa’adi, Z., Shahid, S., Ismail, T., Chung, E. S., & Wang, X. J. (2019). Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorology and Atmospheric Physics131(3), 263–277.

    Google Scholar 

  • Saplıoğlu, K., Kilit, M., & Yavuz, B. K. (2014). Trend analysis of streams in the western mediterranean basin of Turkey. Fresenius Environmental Bulletin, 23(1), 313–327.

    Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63(324), 1379–1389.

    Article  MathSciNet  MATH  Google Scholar 

  • Şen, Z. (2012). Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9), 1042–1046.

    Article  Google Scholar 

  • Şen, Z. (2014). Trend identification simulation and application. Journal of Hydrologic Engineering, 19(3), 635–642.

    Article  Google Scholar 

  • Singh, R. N., Sah, S., Das, B., Potekar, A., Chaudhary, A., & Pathak, H. (2021). Innovative trend analysis of spatio-temporal variation of rainfall in India during 1901–2019. Theoritical and Applied Climatology, 145, 821–838.

    Article  ADS  CAS  Google Scholar 

  • Sravani, A., Rao, L., Padi, R., & Nagaranta, K. (2021). Rainfall Distribution and trend analysis of the Godavari River Basin, India during 1901–2012. Hydrology Science India, 10(4), 1030–1039.

    Google Scholar 

  • Sun, F., Roderick, M. L., & Farquhar, G. D. (2018). Rainfall statistics, stationarity, and climate change. Proceedings of the National Academy of Sciences, 115(10), 2305–2310.

    Article  ADS  CAS  Google Scholar 

  • Tabari, H., & Marofi, S. (2011). Changes of pan evaporation in the west of Iran. Water Resources Management, 25(1), 97–111.

    Article  Google Scholar 

  • Von Storch, H., & Navarra, A. (eds.). (1999). Analysis of climate variability: Applications of statistical techniques proceedings of an autumn school organized by the Commission of the European Community on Elba from October 30 to November 6, 1993. Springer Science & Business Media.

    Google Scholar 

  • Wu, H., & Qian, H. (2017). Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. International Journal of Climatology, 37(5), 2582–2592.

    Article  ADS  Google Scholar 

  • Wu, P., Christidis, N., & Stott, P. (2013). Anthropogenic impact on Earth’s hydrological cycle. Nature Climate Change, 3(9), 807–810.

    Article  ADS  Google Scholar 

  • Yue, S., & Hashino, M. (2003). Temperature trends in Japan: 1900–1996. Theoretical and Applied Climatology, 75(1), 15–27.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poddar, D., Mandal, T., Das, J. (2023). Spatio-Temporal Changes of Rainfall Pattern Under Changing Climate in West Bengal, India. In: Alam, A., Rukhsana (eds) Climate Change, Agriculture and Society. Springer, Cham. https://doi.org/10.1007/978-3-031-28251-5_2

Download citation

Publish with us

Policies and ethics