Skip to main content

Emerging Developments in Skull Base Reconstruction

  • Chapter
  • First Online:
Skull Base Reconstruction

Abstract

This chapter describes emerging developments and advances that will potentially impact skull base reconstruction in the future. This chapter discusses laser tissue welding, endoscopic drug delivery to central nervous system, point of care CSF detection, indocyanine green applications, wound healing and biomechanical models, and training via simulations and 3D printed models. Laser tissue welding can offer primary wound closure and prevent CSF leaks by endoscopic sealing of wound edges using a laser and biological solder, although more studies are warranted to investigate the technical feasibility and solder formulation. To overcome limitations of drug delivery to the central nervous system due to the blood brain barrier, novel techniques such as minimally invasive nasal depot or mucosal graft techniques are being introduced with promising potentials. Point-of-care detection of CSF leaks has immense clinical implications; thus, studies to accurately quantify beta-trace protein or beta-2 transferrin, or other targets, using various techniques are reporting great progress. Endoscope-integrated indocyanine green has been recently utilized to evaluate nasoseptal flap perfusion, which can improve postoperative outcomes in the future. Since the reconstruction of skull base defects is a complex topic with various types of techniques and grafts available, we also discuss the emerging healing and biomechanical models that compare different methods. Lastly, we explore the technological developments in the training of skull base surgery and reconstruction such as 3D-printed models and virtual reality simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mistry YA, Natarajan SS, Ahuja SA. Evaluation of laser tissue welding and laser-tissue soldering for mucosal and vascular repair. Ann Maxillofac Surg. 2018;8(1):35–41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang H-C, Walker CR, Nanda A, Rege K. Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders. ACS Nano. 2013;7(4):2988–98.

    Article  CAS  PubMed  Google Scholar 

  3. Schiavon M, Marulli G, Zuin A, Lunardi F, Villoresi P, Bonora S, et al. Experimental evaluation of a new system for laser tissue welding applied on damaged lungs. Interact Cardiovasc Thorac Surg. 2013;16(5):577–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tal K, Strassmann E, Loya N, Ravid A, Kariv N, Weinberger D, et al. Corneal cut closure using temperature-controlled CO2 laser soldering system. Lasers Med Sci. 2015;30(4):1367–71.

    Article  PubMed  Google Scholar 

  5. Bleier BS, Cohen NA, Chiu AG, O’Malley BWJ, Doghramji L, Palmer JN. Endonasal laser tissue welding: first human experience. Am J Rhinol Allergy. 2010;24(3):244–6.

    Article  PubMed  Google Scholar 

  6. Bleier BS, Palmer JN, Cohen NA. Evaluation of a polysaccharide gel for laser-assisted skull base repair. Am J Rhinol Allergy. 2013;27(2):148–50.

    Article  PubMed  Google Scholar 

  7. Meier JC, Bleier BS. Novel techniques and the future of skull base reconstruction. Adv Otorhinolaryngol. 2013;74:174–83.

    PubMed  Google Scholar 

  8. Zuccato C, Cattaneo E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5(6):311–22.

    Article  CAS  PubMed  Google Scholar 

  9. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S. Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural Regen Res. 2017;12(4):549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Padmakumar S, Jones G, Pawar G, Khorkova O, Hsiao J, Kim J, et al. Minimally invasive nasal depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. J Control Release. 2021;331:176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bleier BS, Kohman RE, Feldman RE, Ramanlal S, Han X. Permeabilization of the blood-brain barrier via mucosal engrafting: implications for drug delivery to the brain. PloS One. 2013;8(4):e61694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bleier BS, Kohman RE, Guerra K, Nocera AL, Ramanlal S, Kocharyan AH, et al. Heterotopic mucosal grafting enables the delivery of therapeutic neuropeptides across the blood brain barrier. Neurosurgery. 2016;78(3):448–57; discussion 457.

    Article  PubMed  Google Scholar 

  13. Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood-brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther. 2017;11:325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reddy M, Baugnon K. Imaging of cerebrospinal fluid rhinorrhea and otorrhea. Radiol Clin North Am. 2017;55(1):167–87.

    Article  PubMed  Google Scholar 

  15. Ramakrishnan VR, Kingdom TT, Nayak JV, Hwang PH, Orlandi RR. Nationwide incidence of major complications in endoscopic sinus surgery. Int Forum Allergy Rhinol. 2012;2(1):34–9.

    Article  PubMed  Google Scholar 

  16. van de Beek D, Drake JM, Tunkel AR. Nosocomial bacterial meningitis. N Engl J Med. 2010;362(2):146–54.

    Article  PubMed  Google Scholar 

  17. Villwock JA, Villwock MR, Deshaies EM, Goyal P. Clinical and economic impact of time from admission for CSF Rhinorrhea to surgical repair. Laryngoscope. 2019;129(3):539–43.

    Article  PubMed  Google Scholar 

  18. Bachmann-Harildstad G. Diagnostic values of beta-2 transferrin and beta-trace protein as markers for cerebrospinal fluid fistula. Rhinology. 2008;46(2):82.

    PubMed  Google Scholar 

  19. Mantur M, Łukaszewicz-Zając M, Mroczko B, Kułakowska A, Ganslandt O, Kemona H, et al. Cerebrospinal fluid leakage--reliable diagnostic methods. Clin Chim Acta. 2011;412(11–12):837–40.

    Article  CAS  PubMed  Google Scholar 

  20. Bradbury DW, Kita AE, Hirota K, St John MA, Kamei DT. Rapid diagnostic test kit for point-of-care cerebrospinal fluid leak detection. SLAS Technol. 2020;25(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  21. Michaelides EM, Kuang H, Pieribone VA. Dickkopf-related protein 3 as a sensitive and specific marker for cerebrospinal fluid leaks. Otol Neurotol. 2016;37(3):299–303.

    Article  PubMed  Google Scholar 

  22. Oh J, Kwon S-J, Dordick JS, Sonstein WJ, Linhardt RJ, Kim M-G. Determination of cerebrospinal fluid leakage by selective deletion of transferrin glycoform using an immunochromatographic assay. Theranostics. 2019;9(14):4182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Litvack ZN, Zada G, Laws ERJ. Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures. J Neurosurg. 2012;116(5):935–41.

    Article  PubMed  Google Scholar 

  24. Tsuzuki S, Aihara Y, Eguchi S, Amano K, Kawamata T, Okada Y. Application of indocyanine green (ICG) fluorescence for endoscopic biopsy of intraventricular tumors. Childs Nerv Syst. 2014;30(4):723–6.

    Article  PubMed  Google Scholar 

  25. Cho A, Cho SS, Buch VP, Buch LY, Lee JYK. Second window Indocyanine green (SWIG) near infrared fluorescent transventricular biopsy of pineal tumor. World Neurosurg. 2020;134:196–200.

    Article  PubMed  Google Scholar 

  26. Mielke D, Malinova V, Rohde V. Comparison of intraoperative microscopic and endoscopic ICG angiography in aneurysm surgery. Neurosurgery. 2014;10(Suppl 3):418–25.

    PubMed  Google Scholar 

  27. Acerbi F, Vetrano IG, Sattin T, de Laurentis C, Bosio L, Rossini Z, et al. The role of indocyanine green videoangiography with FLOW 800 analysis for the surgical management of central nervous system tumors: an update. Neurosurg Focus. 2018;44(6):E6.

    Article  PubMed  Google Scholar 

  28. Cho SS, Buch VP, Teng CW, De Ravin E, Lee JYK. Near-infrared fluorescence with second-window indocyanine green as an adjunct to localize the pituitary stalk during skull base surgery. World Neurosurg. 2020;136:326.

    Article  PubMed  Google Scholar 

  29. Cho SS, Lee JYK. Intraoperative fluorescent visualization of pituitary adenomas. Neurosurg Clin N Am. 2019;30(4):401–12.

    Article  PubMed  Google Scholar 

  30. Hitier M, Cracowski J-L, Hamou C, Righini C, Bettega G. Indocyanine green fluorescence angiography for free flap monitoring: a pilot study. J Craniomaxillofac Surg. 2016;44(11):1833–41.

    Article  PubMed  Google Scholar 

  31. Yano T, Okazaki M, Tanaka K, Tsunoda A, Aoyagi M, Kishimoto S. Use of intraoperative fluorescent indocyanine green angiography for real-time vascular evaluation of pericranial flaps. Ann Plast Surg. 2016;76(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  32. Yeoh MS, Kim DD, Ghali GE. Fluorescence angiography in the assessment of flap perfusion and vitality. Oral Maxillofac Surg Clin North Am. 2013;25(1):61–6, vi.

    Article  PubMed  Google Scholar 

  33. Kerr EE, Jamshidi A, Carrau RL, Campbell RG, Filho LFD, Otto BA, et al. Indocyanine green fluorescence to evaluate nasoseptal flap viability in endoscopic endonasal cranial base surgery. J Neurol Surg B Skull Base. 2017;78(5):408–12.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Geltzeiler M, Nakassa ACI, Turner M, Setty P, Zenonos G, Hebert A, et al. Evaluation of intranasal flap perfusion by intraoperative indocyanine green fluorescence angiography. Oper Neurosurg (Hagerstown). 2018;15(6):672–6.

    Article  PubMed  Google Scholar 

  35. Hosemann W, Goede U, Sauer M. Wound healing of mucosal autografts for frontal cerebrospinal fluid leaks—clinical and experimental investigations. Rhinology. 1999;37(3):108–12.

    CAS  PubMed  Google Scholar 

  36. de Almeida JR, Ghotme K, Leong I, Drake J, James AL, Witterick IJ. A new porcine skull base model: fibrin glue improves strength of cerebrospinal fluid leak repairs. Otolaryngol Head Neck Surg. 2009;141(2):184–9.

    Article  PubMed  Google Scholar 

  37. Goldschmidt E, Ielpi M, Loresi M, D’adamo M, Giunta D, Carrizo A, et al. Assessing the role of selected growth factors and cytostatic agents in an in vitro model of human dura mater healing. Neurol Res. 2014;36(12):1040–6.

    Article  CAS  PubMed  Google Scholar 

  38. Topdag M, Kara A, Konuk E, Demir N, Ozturk M, Calıskan S, et al. The healing effects of autologous mucosal grafts in experimentally injured rabbit maxillary sinuses. Clin Exp Otorhinolaryngol. 2016;9(1):44–50.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Goldschmidt E, Hem S, Ajler P, Ielpi M, Loresi M, Giunta D, et al. A new model for dura mater healing: human dural fibroblast culture. Neurol Res. 2013;35(3):300–7.

    Article  CAS  PubMed  Google Scholar 

  40. Fandiño M, Macdonald K, Singh D, Whyne C, Witterick I. Determining the best graft-sealant combination for skull base repair using a soft tissue in vitro porcine model. Int Forum Allergy Rhinol. 2013;3(3):212–6.

    Article  PubMed  Google Scholar 

  41. de Almeida JR, Morris A, Whyne CM, James AL, Witterick IJ. Testing biomechanical strength of in vitro cerebrospinal fluid leak repairs. J Otolaryngol Head Neck Surg. 2009;38(1):106–11.

    PubMed  Google Scholar 

  42. Lin RP, Weitzel EK, Chen PG, McMains KC, Chang DR, Braxton EE, et al. Failure pressures after repairs of 2-cm × 2.5-cm rhinologic dural defects in a porcine ex vivo model. Int Forum Allergy Rhinol. 2016;6(10):1034–9.

    Article  PubMed  Google Scholar 

  43. Lin RP, Weitzel EK, Chen PG, McMains KC, Majors J, Bunegin L. Failure pressures of three rhinologic dural repairs in a porcine ex vivo model. Int Forum Allergy Rhinol. 2015;5(7):633–6.

    Article  PubMed  Google Scholar 

  44. Chen PG, Clampitt MR, Chorath KT, Lin RP, Weitzel EK, McMains KC, et al. Augmentation of dural defect repairs strength with an acrylic plate in a porcine ex vivo model. Am J Rhinol Allergy. 2019;33(6):757–62.

    Article  PubMed  Google Scholar 

  45. Chorath K, Krysinski M, Bunegin L, Majors J, Weitzel EK, McMains KC, et al. Failure pressures of dural repairs in a porcine ex vivo model: novel use of titanium clips versus tissue glue. Allergy Rhinol (Providence). 2019;10:2152656719879677.

    Article  PubMed  Google Scholar 

  46. Rowan NR, Turner MT, Valappil B, Fernandez-Miranda JC, Wang EW, Gardner PA, et al. Injury of the carotid artery during endoscopic endonasal surgery: surveys of skull base surgeons. J Neurol Surg B Skull Base. 2018;79(3):302–8.

    Article  PubMed  Google Scholar 

  47. Donoho DA, Pangal DJ, Kugener G, Rutkowski M, Micko A, Shahrestani S, et al. Improved surgeon performance following cadaveric simulation of internal carotid artery injury during endoscopic endonasal surgery: training outcomes of a nationwide prospective educational intervention. J Neurosurg. 2021:1–9.

    Google Scholar 

  48. Donoho DA, Johnson CE, Hur KT, Buchanan IA, Fredrickson VL, Minneti M, et al. Costs and training results of an objectively validated cadaveric perfusion-based internal carotid artery injury simulation during endoscopic skull base surgery. Int Forum Allergy Rhinol. 2019;9(7):787–94.

    PubMed  Google Scholar 

  49. Strickland BA, Ravina K, Kammen A, Chang S, Rutkowski M, Donoho DA, et al. The use of a novel perfusion-based human cadaveric model for simulation of dural venous sinus injury and repair. Oper Neurosurg (Hagerstown). 2020;19(3):E269–74.

    Article  PubMed  Google Scholar 

  50. Christian EA, Bakhsheshian J, Strickland BA, Fredrickson VL, Buchanan IA, Pham MH, et al. Perfusion-based human cadaveric specimen as a simulation training model in repairing cerebrospinal fluid leaks during endoscopic endonasal skull base surgery. J Neurosurg. 2018;129(3):792–6.

    Article  PubMed  Google Scholar 

  51. Lavigne P, Yang N. Training and surgical simulation in skull base surgery: a systematic review. Curr Otorhinolaryngol Rep. 2020;8(2):154–9.

    Article  Google Scholar 

  52. Barber SR, Jain S, Mooney MA, Almefty KK, Lawton MT, Son Y-J, et al. Combining stereoscopic video and virtual reality simulation to maximize education in lateral skull base surgery. Otolaryngol Head Neck Surg. 2020;162(6):922–5.

    Article  PubMed  Google Scholar 

  53. Locketz GD, Lui JT, Chan S, Salisbury K, Dort JC, Youngblood P, et al. Anatomy-specific virtual reality simulation in temporal bone dissection: perceived utility and impact on surgeon confidence. Otolaryngol Head Neck Surg. 2017;156(6):1142–9.

    Article  PubMed  Google Scholar 

  54. Kim DH, Kim HM, Park J-S, Kim SW. Virtual reality haptic simulator for endoscopic sinus and skull base surgeries. J Craniofac Surg. 2020;31(6):1811–4.

    Article  PubMed  Google Scholar 

  55. Low CM, Morris JM, Price DL, Matsumoto JS, Stokken JK, O’Brien EK, et al. Three-dimensional printing: current use in rhinology and endoscopic skull base surgery. Am J Rhinol Allergy. 2019;33(6):770–81.

    Article  PubMed  Google Scholar 

  56. Lan Q, Zhu Q, Xu L, Xu T. Application of 3D-printed craniocerebral model in simulated surgery for complex intracranial lesions. World Neurosurg. 2020;134:e761–70.

    Article  PubMed  Google Scholar 

  57. Lin J, Zhou Z, Guan J, Zhu Y, Liu Y, Yang Z, et al. Using three-dimensional printing to create individualized cranial nerve models for skull base tumor surgery. World Neurosurg. 2018;120:e142–52.

    Article  PubMed  Google Scholar 

  58. Mooney MA, Cavallo C, Zhou JJ, Bohl MA, Belykh E, Gandhi S, et al. Three-dimensional printed models for lateral skull base surgical training: anatomy and simulation of the transtemporal approaches. Oper Neurosurg (Hagerstown). 2020;18(2):193–201.

    Article  PubMed  Google Scholar 

  59. Barber SR, Wong K, Kanumuri V, Kiringoda R, Kempfle J, Remenschneider AK, et al. Augmented reality, surgical navigation, and 3D printing for transcanal endoscopic approach to the petrous apex. OTO Open. 2018;2(4):2473974X18804492.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward C. Kuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goshtasbi, K., Tajudeen, B.A., Lin, H.W., Djalilian, H.R., Kuan, E.C. (2023). Emerging Developments in Skull Base Reconstruction. In: Kuan, E.C., Tajudeen, B.A., Djalilian, H.R., Lin, H.W. (eds) Skull Base Reconstruction . Springer, Cham. https://doi.org/10.1007/978-3-031-27937-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27937-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27936-2

  • Online ISBN: 978-3-031-27937-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics