Skip to main content

FRAM in the Construction Sector

  • Conference paper
  • First Online:
IoT and Data Science in Engineering Management (CIO 2022)

Abstract

In this study, a literature review about the application of the Functional Resonance Analysis Method (FRAM) in the construction sector is performed. Complex Sociotechnical Systems (CSS) require accurate tools from Resilience Engineering (RE) to determine the variability in the system and adjust its performance to the reality of the construction sector. The databases reviewed were: Scopus, Wos, ScienceDirect and PubMed with the guidance of the PRISMA methodology, using the following advanced search criteria by title, abstract and key words. The RE was presented as an alternative to remedy safety deficiencies in construction and with FRAM it was proposed to improve safety deficiencies and even in combination with other tools would help to control variability to manage CSS. The contributions of FRAM would serve as a solid basis for an in-depth and systematic analysis of the daily performance in the construction sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Patriarca, R., Di Gravio, G., Costantino, F.: Resilience engineering to assess risks for the air traffic management system: a new systemic method. Int. J. Reliab. Saf. 10(4), 323–345 (2016). https://doi.org/10.1504/IJRS.2016.084477

    Article  Google Scholar 

  2. Ham, D.H.D.-H.: Safety-II and resilience engineering in a nutshell: an introductory guide to their concepts and methods. Saf. Health Work (2021). https://doi.org/10.1016/j.shaw.2020.11.004

    Article  Google Scholar 

  3. Martins, J.B., Carim, G., Saurin, T.A., Costella, M.F.: Integrating Safety-I and Safety-II: learning from failure and success in construction sites. Saf. Sci., 148, 105672 (2022). https://doi.org/10.1016/j.ssci.2022.105672

  4. MacKinnon, R.J., Pukk-Harenstam, K., Kennedy, C., Hollnagel, E., Slater, D.: A novel approach to explore Safety-I and Safety-II perspectives in in situ simulations-the structured what if functional resonance analysis methodology. Adv. Simul. (London, England) 6(1), 21 (2021). https://doi.org/10.1186/s41077-021-00166-0

  5. Said, S., Bouloiz, H., Gallab, M.: A new structure of sociotechnical system processes using resilience engineering. Int. J. Eng. Bus. Manag. 11, 184797901982715 (2019). https://doi.org/10.1177/1847979019827151

  6. Carvalho, E.A., Gomes, J.O., Jatobá, A., Silva, M.F., Carvalho, P.V.R.: Software requirements elicitation for complex systems with the Functional Resonance Analysis Method (FRAM) (2021). https://doi.org/10.1145/3466933.3466950

  7. Qiao, W., Li, X., Liu, Q.: Systemic approaches to incident analysis in coal mines: comparison of the STAMP, FRAM and ‘2–4’ models. Resour. Policy 63, 101453 (2019). https://doi.org/10.1016/j.resourpol.2019.101453

  8. Hollnagel, E.: Safety-II in practice: developing the resilience potentials. In: Safety-II Practice Developing the Resilience Potentials, pp. 1–130, January 2017. https://doi.org/10.4324/9781315201023

  9. Rutkowska, P., Krzyzanowski, M.: FRAM modelling of the transfer of control over aircraft. Sci. J. Sılesıan Univ. Technol. Transp. 101, 159–166 (2018). https://doi.org/10.20858/sjsutst.2018.101.15

    Article  Google Scholar 

  10. Ratnitsky, A., Havranek, J., Mohr, G.L., Rüther-Wolf, K., Schwendimann, R.: Safety-II in daily clinical practice. Z. Evid. Fortbild. Qual. Gesundhwes. 162, 10–15 (2021). https://doi.org/10.1016/j.zefq.2021.02.003

    Article  Google Scholar 

  11. Costella, M.F., Stanisci, R.B., Martins, J.B., Lantelme, E.M.V., Pilz, S.E.: Exploring Safety-II in practice: a case study of the construction industry. Int. Rev. Civ. Eng. 12(2), 69–77 (2021). https://doi.org/10.15866/irece.v12i2.19385

    Article  Google Scholar 

  12. Schafer, D., Abdelhamid, T.S., Mitropoulos, P., Mrozowski, T.: Resilience engineering: A new approach for safety managment. In: Building a Sustainable Future - Proceedings of the 2009 Construction Research Congress, pp. 766–775 (2009). https://doi.org/10.1061/41020(339)78

  13. Patriarca, R.: resilience engineering for sociotechnical safety management. In: Multisystemic Resilience: Adaptation and Transformation in Contexts of Change, Department of Mechanical and Aerospace Engineering, Sapienza University, Rome, Italy, pp. 477–492 (2021)

    Google Scholar 

  14. Hegde, S., Hettinger, A.Z., Fairbanks, R.J., Wreathall, J., Wears, R.L., Bisantz, A.M.: Knowledge elicitation for resilience engineering in health care. Proc. Hum. Factors Ergon. Soc. 2015, 175–179 (2015). https://doi.org/10.1177/1541931215591036

  15. Falegnami, A., et al.: A multicountry comparative survey about organizational resilience in anaesthesia. J. Eval. Clin. Pract. 24(6), 1347–1357 (2018). https://doi.org/10.1111/jep.13054

    Article  Google Scholar 

  16. Peñaloza, G.A., Saurin, T.A., Formoso, C.T.: Monitoring complexity and resilience in construction projects: the contribution of safety performance measurement systems. Appl. Ergon. 82, 102978 (2020). https://doi.org/10.1016/j.apergo.2019.102978

  17. Machfudiyanto, R.A., Latief, Y., Robert: Critical success factors to ımprove safety culture on construction project in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 258(1), 012016 (2019). https://doi.org/10.1088/1755-1315/258/1/012016

  18. Rosa, L.V., Haddad, A.N., de Carvalho, P.V.R.: Assessing risk in sustainable construction using the Functional Resonance Analysis Method (FRAM). Cogn. Technol. Work 17(4), 559–573 (2015). https://doi.org/10.1007/s10111-015-0337-z

    Article  Google Scholar 

  19. Trinh, M.T., Feng, Y.: Measuring resilient safety culture of construction projects. In: Arezes, P.M.F.M. (ed.) AHFE 2018. AISC, vol. 791, pp. 580–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94589-7_56

    Chapter  Google Scholar 

  20. Di Gravio, G., Costantino, F., Falegnami, A., Patriarca, R.: Actionable safety analyses in socio-technical systems with myFRAM. In: 2019 4th Internatıonal Conference On System Relıabılıty And Safety(ICSRS 2019), pp. 504–508 (2019)

    Google Scholar 

  21. Trinh, M.T., Feng, Y., Mohamed, S.: Framework for measuring resilient safety culture in Vietnam’s construction environment. J. Constr. Eng. Manag. 145(2), 04018127-1–04018127-12 (2019). https://doi.org/10.1061/(ASCE)CO.1943-7862.0001602

  22. Saurin, T.A., Sanches, R.C.: Lean construction and resilience engineering: Complementary perspectives of variability. In: 22nd Annual Conference of the International Group for Lean Construction: Understanding and Improving Project Based Production, IGLC 2014, pp. 61–71 (2014)

    Google Scholar 

  23. Haddad, A.N., Rosa, L.V.: Construction sustainability evaluation using AHP and FRAM methods. In: IIE Annual Conference and Expo 2015, pp. 556–565 (2015). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84971014012&partnerID=40&md5=fcd39eaed6244e1682e42104a9f149ed

  24. Pazell, S., Burgess-Limerick, R., Horberry, T.: Application of functional resonance analysis method to sustain human-centered design practice in road construction. In: Proceedings of the Human Factors and Ergonomics Society, pp. 875–879 (2016). https://doi.org/10.1177/1541931213601200

  25. Saurin, T.A.: The FRAM as a tool for modelling variability propagation in Lean Construction. In: IGLC 2016 - 24th Annual Conference of the International Group for Lean Construction, pp. 3–12 (2016)

    Google Scholar 

  26. Rosa, L.V.L.V., França, J.E.M.J.E.M., Haddad, A.N.A.N., Carvalho, P.V.R.P.V.R.: A resilience engineering approach for sustainable safety in green construction. J. Sustain. Dev. Energy, Water Environ. Syst. 5(4), 480–495 (2017). https://doi.org/10.13044/j.sdewes.d5.0174

  27. Alboghobeish, A., Shirali, G.A.: Integration of functional resonance analysis with multicriteria analysis for sociotechnical systems risk management. Risk Anal. (2021). https://doi.org/10.1111/risa.13796

    Article  Google Scholar 

  28. del Carmen Pardo-Ferreira, M., et al.: Using functional resonance analysis method to understand construction activities for concrete structures. Saf. Sci. 128, 104771 (2020). https://doi.org/10.1016/j.ssci.2020.104771

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marcelo Tierra-Arévalo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tierra-Arévalo, J.M., del Carmen Pardo-Ferreira, M., Herrera-Pérez, V., Rubio-Romero, J.C. (2023). FRAM in the Construction Sector. In: García Márquez, F.P., Segovia Ramírez, I., Bernalte Sánchez, P.J., Muñoz del Río, A. (eds) IoT and Data Science in Engineering Management. CIO 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 160. Springer, Cham. https://doi.org/10.1007/978-3-031-27915-7_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27915-7_83

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27914-0

  • Online ISBN: 978-3-031-27915-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics