Skip to main content

Abstract

Extended Reality as a consolidated game platform was always a dream for both final consumers and game producers. If for one side this technology had enchanted and called the attention due its possibilities, for other side many challenges and difficulties had delayed its proliferation and massification. This paper intends to rise and discuss aspects and considerations related to these challenges and solutions. We try to bring some of the most relevant research topics and try to guess how XR games should look in the near future. We divide the challenges into 7 topics, based on extensive literature reviews: Cybersickness, User Experience, Displays, Rendering, Movements, Body Tracking and External World Information. We believe that this topics are a Grand Challenge, since the next generation of entertainment depends on adequately solving them in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oculus Founder Palmer Luckey on What It Will Take to Make Virtual Reality Really Big (2020). https://www.technologyreview.com/2016/03/17/161530/. Accessed 10 Dec 2020

  2. Sparrow, A.L., Gibbs, M., Arnold, M.: The ethics of multiplayer game design and community management: industry perspectives and challenges. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445363

  3. Abramov, I., Gordon, J., Feldman, O., Chavarga, A.: Sex and vision ii: color appearance of monochromatic lights. Biol. Sex Differ. 3(1), 21 (2012). https://doi.org/10.1186/2042-6410-3-21

    Article  Google Scholar 

  4. Albert, J.: User-Centric Classification of Virtual Reality Locomotion Methods. Master’s thesis, University of Washington (2018)

    Google Scholar 

  5. Albert, R., Patney, A., Luebke, D., Kim, J.: Latency requirements for foveated rendering in virtual reality. ACM Trans. Appl. Percept. (TAP) 14(4), 1–13 (2017)

    Article  Google Scholar 

  6. Ams, L.L., Bernard, J., Vance, J., Lutz, R., Prabhu, G.: A new taxonomy for locomotion in virtual environments. Ph.D. thesis, Iowa State University (2002)

    Google Scholar 

  7. Arns, L.L., Cerney, M.M.: The relationship between age and incidence of cybersickness among immersive environment users. In: IEEE Proceedings. VR 2005. Virtual Reality, 2005, pp. 267–268. IEEE (2005)

    Google Scholar 

  8. Barré-Brisebois, C., et al.: Hybrid rendering for real-time ray tracing. In: Ray Tracing Gems, pp. 437–473. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4427-2_25

    Chapter  Google Scholar 

  9. Berger, H.: Über das elektrenkephalogramm des menschen. Eur. Arch. Psychiatry Clin. Neurosci. 87(1), 527–570 (1929)

    Google Scholar 

  10. Biocca, F.: Will simulation sickness slow down the diffusion of virtual environment technology? Presence: Teleoperators Virtual Environ. 1(3), 334–343 (1992)

    Google Scholar 

  11. Birnstiel, S., Oberdörfer, S., Latoschik, M.E.: Stay safe! safety precautions for walking on a conventional treadmill in VR. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 732–733 (2022). https://doi.org/10.1109/VRW55335.2022.00217

  12. Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017). https://doi.org/10.3390/mti1040024

    Article  Google Scholar 

  13. Bonato, F., Bubka, A., Palmisano, S.: Combined pitch and roll and cybersickness in a virtual environment. Aviat. Space Environ. Med. 80(11), 941–945 (2009)

    Article  Google Scholar 

  14. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.: Nerd: neural reflectance decomposition from image collections. In: IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  15. Bowman, D.A., Koller, D., Hodges, L.F.: A methodology for the evaluation of travel techniques for immersive virtual environments (1998)

    Google Scholar 

  16. Bromley, T.: How To Be A Games User Researcher: Run better playtests, reveal usability and UX issues, and make videogames better. Independently Published (2021)

    Google Scholar 

  17. Brooks, J.O., et al.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)

    Article  Google Scholar 

  18. Bruck, S., Watters, P.A., et al.: Cybersickness and anxiety during simulated motion: Implications for VRET. Annu. Rev. Cybertherapy Telemedicine 144, 169–173 (2009)

    Google Scholar 

  19. Calandra, D., Billi, M., Lamberti, F., Sanna, A., Borchiellini, R.: Arm swinging vs treadmill: a comparison between two techniques for locomotion in virtual reality, pp. 53–56. The Eurographics Association (2018). https://doi.org/10.2312/egs.20181043

  20. Cannavò, A., Calandra, D., Pratticò, F.G., Gatteschi, V., Lamberti, F.: An evaluation testbed for locomotion in virtual reality. IEEE Trans. Vis. Comput. Graph. 27(3), 1871–1889 (2021). https://doi.org/10.1109/TVCG.2020.3032440

    Article  Google Scholar 

  21. Cao, Z., Jerald, J., Kopper, R.: Visually-induced motion sickness reduction via static and dynamic rest frames. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 105–112. IEEE (2018)

    Google Scholar 

  22. Carnegie, K., Rhee, T.: Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Comput. Graph. Appl. 35(5), 34–41 (2015)

    Article  Google Scholar 

  23. Caserman, P., Garcia-Agundez, A., Göbel, S.: A survey of full-body motion reconstruction in immersive virtual reality applications. IEEE Trans. Vis. Comput. Graph. 26(10), 3089–3108 (2019)

    Article  Google Scholar 

  24. Chelen, W., Kabrisky, M., Rogers, S.: Spectral analysis of the electroencephalographic response to motion sickness. Aviat. Space Environ. Med. 64(1), 24–29 (1993)

    Google Scholar 

  25. Cherni, H., Métayer, N., Souliman, N.: Literature review of locomotion techniques in virtual reality. Int. J. Virtual Reality 20, 1–20 (2020). https://doi.org/10.20870/ijvr.2020.20.1.3183

  26. Cheung, B., Hofer, K., Heskin, R., Smith, A.: Physiological and behavioral responses to an exposure of pitch illusion in the simulator. Aviat. Space Environ. Med. 75(8), 657–665 (2004)

    Google Scholar 

  27. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The cave: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–73 (1992)

    Article  Google Scholar 

  28. Curry, C., Li, R., Peterson, N., Stoffregen, T.A.: Cybersickness in virtual reality head-mounted displays: examining the influence of sex differences and vehicle control. Int. J. Hum.-Comput. Interact. 36(12), 1–7 (2020)

    Article  Google Scholar 

  29. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016)

    Article  Google Scholar 

  30. Dennison, M.S., D’Zmura, M.: Cybersickness without the wobble: experimental results speak against postural instability theory. Appl. Ergonomics 58, 215–223 (2017)

    Article  Google Scholar 

  31. Draper, M.H., Viirre, E.S., Furness, T.A., Gawron, V.J.: Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Hum. Factors: J. Hum. Factors Ergon. Soc. 43(1), 129–146 (2001)

    Article  Google Scholar 

  32. Edwards, C., Creaser, J., Caird, J., Lamsdale, A., Chisholm, S.: Older and younger driver performance at complex intersections: Implications for using perception-response time and driving simulation (2003)

    Google Scholar 

  33. Evangelista Belo, J.a.M., Feit, A.M., Feuchtner, T., Grønbæk, K.: Xrgonomics: Facilitating the creation of ergonomic 3d interfaces. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445349

  34. Foy, C.R., Dudley, J.J., Gupta, A., Benko, H., Kristensson, P.O.: Understanding, detecting and mitigating the effects of coactivations in ten-finger mid-air typing in virtual reality. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445671

  35. Frank, L.H., Kennedy, R.S., McCauley, M., Root, R., Kellogg, R.: Simulator sickness: Sensorimotor disturbances induced in flight simulators. Technical report, Naval Training Equipment Center Orlando FL (1984)

    Google Scholar 

  36. Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47(5), 507–516 (1998)

    Article  Google Scholar 

  37. Grassini, S., Laumann, K.: Are modern head-mounted displays sexist? a systematic review on gender differences in HMD-mediated virtual reality. Front. Psychol. 11, 1604 (2020)

    Article  Google Scholar 

  38. Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)

    Article  Google Scholar 

  39. Guo, C., Tsoi, C.W., Wong, Y.L., Yu, K.C., So, R.: Visually induced motion sickness during computer game playing. Contemp. Ergon. Hum. Factors 51(58), 51–58 (2013). ROUTLEDGE in association with GSE Research (2013)

    Google Scholar 

  40. Halbig, A., Latoschik, M.E.: A systematic review of physiological measurements, factors, methods, and applications in virtual reality. Front. Virtual Reality 25(2) (2021). https://doi.org/10.3389/frvir.2021.694567

  41. Han, S., Yoon, P., Ha, M., Kim, K.: VR wayfinding training for people with visual impairment using VR treadmill and VR tracker. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 596–597 (2022). https://doi.org/10.1109/VRW55335.2022.00149

  42. Han, S., et al.: Megatrack: monochrome egocentric articulated hand-tracking for virtual reality. ACM Trans. Graph. 39(4), 87 (2020)

    Article  Google Scholar 

  43. Hashemian, A.M., Kruijff, E., Adhikari, A., Heyde, M.V.D., Aguilar, I., Riecke, B.E.: Is walking necessary for effective locomotion and interaction in VR? pp. 395–396. Institute of Electrical and Electronics Engineers Inc. (2021). https://doi.org/10.1109/VRW52623.2021.00084

  44. Hodent, C.: The Gamer’s Brain: How Neuroscience and UX Can Impact Video Game Design. CRC Press, Boca Raton (2017). https://books.google.com.br/books?id=JzyhDwAAQBAJ

  45. Hu, S., McChesney, K.A., Player, K.A., Bahl, A.M., Buchanan, J.B., Scozzafava, J.E.: Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviat. Space Environ. Med. (1999)

    Google Scholar 

  46. Hu, S., Stern, R.M., Vasey, M.W., Koch, K.L.: Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum. Aviat. Space Environ. Med. (1989)

    Google Scholar 

  47. Jeong, D., Yoo, S., Yun, J.: Cybersickness analysis with EEG using deep learning algorithms. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 827–835. IEEE (2019)

    Google Scholar 

  48. Jiang, F., Yang, X., Feng, L.: Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices. In: Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, vol. 1, pp. 309–318 (2016)

    Google Scholar 

  49. Jonathan, E., Roberts, C., Presentation, S., Razzaque, S., Kohn, Z., Whitton, M.: Redirected walking. In: Proceedings of Eurographics (2001)

    Google Scholar 

  50. Joyce, A.: 10 usability heuristics applied to virtual reality (2021)

    Google Scholar 

  51. Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–150 (1986)

    Google Scholar 

  52. Kasahara, S., et al.: Malleable embodiment: changing sense of embodiment by spatial-temporal deformation of virtual human body. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 6438–6448 (2017)

    Google Scholar 

  53. Kemeny, A., Chardonnet, J.R., Colombet, F.: Getting Rid of Cybersickness: In Virtual Reality Augmented Reality, and Simulators. Springer, Cham (2020)

    Book  Google Scholar 

  54. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  55. Kilgariff, E., Moreton, H., Stam, N., Bell, B.: Nvidia turing architecture in-depth (2018). https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/

  56. Kim, H.K., Park, J., Choi, Y., Choe, M.: Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73 (2018)

    Article  Google Scholar 

  57. Kim, J., Kim, W., Oh, H., Lee, S., Lee, S.: A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10580–10589 (2019)

    Google Scholar 

  58. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42(5), 616–625 (2005)

    Google Scholar 

  59. Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report, DTIC Document (1995)

    Google Scholar 

  60. Korein, J., Badler, N.: Temporal anti-aliasing in computer generated animation. In: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 377–388 (1983)

    Google Scholar 

  61. Koskela, M., Lotvonen, A., Mäkitalo, M., Kivi, P., Viitanen, T., Jääskeläinen, P.: Foveated real-time path tracing in visual-polar space. In: Proceedings of 30th Eurographics Symposium on Rendering. The Eurographics Association (2019)

    Google Scholar 

  62. Kunz, A., Zank, M., Kunz, A.: Using locomotion models for estimating walking targets in immersive virtual environments (2015). https://doi.org/10.3929/ethz-a-010530701

  63. Lackner, J.: Human orientation, adaptation, and movement control. Motion Sickness Vis. Displays Armored Veh. Des. 28–50 (1990)

    Google Scholar 

  64. Langbehn, E.: Walking in Virtual Reality: Perceptually-inspired Interaction Techniques for Locomotion in Immersive Environments. Ph.D. thesis, Hamburg University (2019)

    Google Scholar 

  65. Langbehn, E., Lubos, P., Steinicke, F.: Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference-Laval Virtual, p. 4. ACM (2018)

    Google Scholar 

  66. LaViola, J.J., Jr.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)

    Article  Google Scholar 

  67. Levoy, M., Whitaker, R.: Gaze-directed volume rendering. In: Proceedings of the 1990 Symposium on Interactive 3D Graphics, pp. 217–223 (1990)

    Google Scholar 

  68. Lin, C.T., Chuang, S.W., Chen, Y.C., Ko, L.W., Liang, S.F., Jung, T.P.: EEG effects of motion sickness induced in a dynamic virtual reality environment. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3872–3875. IEEE (2007)

    Google Scholar 

  69. Lin, J.J., Abi-Rached, H., Lahav, M.: Virtual guiding avatar: an effective procedure to reduce simulator sickness in virtual environments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 719–726. ACM (2004)

    Google Scholar 

  70. Marques, B.A., Drumond, R.R., Vasconcelos, C.N., Clua, E.: Deep light source estimation for mixed reality. In: Visigrapp (1: grapp), pp. 303–311 (2018)

    Google Scholar 

  71. Marques, B.A.D., Clua, E.W.G., Vasconcelos, C.N.: Deep spherical harmonics light probe estimator for mixed reality games. Comput. Graph. 76, 96–106 (2018). https://doi.org/10.1016/j.cag.2018.09.003

    Article  Google Scholar 

  72. Marques, B.A.D., Gonzalez Clua, E.W., Montenegro, A.A., Nader Vasconcelos, C.: Spatially and color consistent environment lighting estimation using deep neural networks for mixed reality. Comput. Graph. 102, 257–268 (2022). https://doi.org/10.1016/j.cag.2021.08.007. https://www.sciencedirect.com/science/article/pii/S0097849321001710

  73. Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH 2016 Emerging Technologies. SIGGRAPH 2016, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2929464.2929482

  74. McCauley, M.E., Sharkey, T.J.: Cybersickness: perception of self-motion in virtual environments. Presence: Teleoperators Virtual Environ. 1(3), 311–318 (1992)

    Article  Google Scholar 

  75. McCullough, M., et al.: Myo arm: swinging to explore a VE. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, pp. 107–113. SAP 2015, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2804408.2804416

  76. Meng, X., Du, R., Varshney, A.: Eye-dominance-guided foveated rendering. IEEE Trans. Visual Comput. Graph. 26(5), 1972–1980 (2020)

    Article  Google Scholar 

  77. Morales, R., Chelen, W., Kabrisky, M.: Electroencephalographic theta band changes during motion sickness. Aviat. Space Environ. Med. 61, 507 (1990)

    Google Scholar 

  78. Nalivaiko, E., Rudd, J.A., So, R.H.: Motion sickness, nausea and thermoregulation: the “toxic’’ hypothesis. Temperature 1(3), 164–171 (2014)

    Article  Google Scholar 

  79. Naqvi, S.A.A., Badruddin, N., Jatoi, M.A., Malik, A.S., Hazabbah, W., Abdullah, B.: EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australas. Phys. Eng. Sci. Med. 38(4), 721–729 (2015)

    Article  Google Scholar 

  80. Nguyen, A.: Identification of Redirected Walking in Immersive Virtual Enviroments. Ph.D. thesis, ETH Zurich (2021)

    Google Scholar 

  81. Nichols, S.: Physical ergonomics of virtual environment use. Appl. Ergon. 30(1), 79–90 (1999). https://doi.org/10.1016/S0003-6870(98)00045-3, https://www.sciencedirect.com/science/article/pii/S0003687098000453

  82. Olano, M., Cohen, J., Mine, M., Bishop, G.: Combatting rendering latency. In: Proceedings of the 1995 Symposium on Interactive 3D graphics. pp. 19-ff. ACM (1995)

    Google Scholar 

  83. de Oliveira, E., Clua, E.W.G., Vasconcelos, C.N., Marques, B.A.D., Trevisan, D.G., de Castro Salgado, L.C.: FPVRGame: deep learning for hand pose recognition in real-time using low-end HMD. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 70–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34644-7_6

    Chapter  Google Scholar 

  84. Oliveira, W., Tizuka, M., Clua, E., Trevisan, D., Salgado, L.: Virtual and real body representation in mixed reality: an analysis of self-presence and immersive environments. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 42–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34644-7_4

    Chapter  Google Scholar 

  85. Pandey, R., et al.: Total relighting: learning to relight portraits for background replacement. ACM Trans. Graph. 40(4) (2021). https://doi.org/10.1145/3450626.3459872

  86. Park, G., Rosenthal, T.J., Allen, R.W., Cook, M.L., Fiorentino, D., Viirre, E.: Simulator sickness results obtainted during a novice driver training study. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 48, pp. 2652–2655. SAGE Publications Sage CA, Los Angeles, CA (2004)

    Google Scholar 

  87. Patney, A., et al.: Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)

    Article  MathSciNet  Google Scholar 

  88. Poh, M.Z., Swenson, N.C., Picard, R.W.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 57(5), 1243–1252 (2010)

    Article  Google Scholar 

  89. Poole, A., Ball, L.J.: Eye tracking in HCI and usability research. In: Encyclopedia of Human Computer Interaction, pp. 211–219. IGI Global (2006)

    Google Scholar 

  90. Porac, C., Coren, S.: The dominant eye. Psychol. Bull. 83(5), 880 (1976)

    Article  Google Scholar 

  91. Porcino, T., Clua, E., Vasconcelos, C., Trevisan, D.: Dynamic focus selection for first-person navigation with head mounted displays. SBGames (2016)

    Google Scholar 

  92. Porcino, T., Rodrigues, E.O., Bernardini, F., Trevisan, D., Clua, E.: Identifying cybersickness causes in virtual reality games using symbolic machine learning algorithms. Entertainment Comput. 41, 100473 (2022)

    Article  Google Scholar 

  93. Porcino, T., Rodrigues, E.O., Silva, A., Clua, E., Trevisan, D.: Using the gameplay and user data to predict and identify causes of cybersickness manifestation in virtual reality games. In: 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE (2020)

    Google Scholar 

  94. Porcino, T.M., Clua, E., Trevisan, D., Vasconcelos, C.N., Valente, L.: Minimizing cyber sickness in head mounted display systems: design guidelines and applications. In: 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–6. IEEE (2017)

    Google Scholar 

  95. Qi, M., Liu, Y., Cui, J.: A novel redirected walking algorithm for VR navigation in small tracking area, pp. 518–519. Institute of Electrical and Electronics Engineers Inc. (2021). https://doi.org/10.1109/VRW52623.2021.00141

  96. Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. R. Soc. Med. 71(11), 819–829 (1978)

    Article  Google Scholar 

  97. Reason, J.T., Brand, J.J.: Motion Sickness. Academic press, Cambridge (1975)

    Google Scholar 

  98. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9

    Article  Google Scholar 

  99. Rebenitsch, L.R.: Cybersickness Prioritization and Modeling. Michigan State University, Michigan (2015)

    Google Scholar 

  100. Reder, S.M.: On-line monitoring of eye-position signals in contingent and noncontingent paradigms. Behav. Res. Methods Instrum. 5(2), 218–228 (1973)

    Article  Google Scholar 

  101. Regan, L., Mandryk, K.M.I., Calvert, T.W.: Using psychophysiological techniques to measure user experience with entertainment technologies. Behav. Inf. Technol. 25(2), 141–158 (2006). https://doi.org/10.1080/01449290500331156

  102. Riecke, B.E., LaViola, J.J., Kruijff, E.: 3D user interfaces for virtual reality and games: 3D selection, manipulation, and spatial navigation. In: ACM SIGGRAPH 2018 Courses. SIGGRAPH 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3214834.3214869

  103. Rietzler, M., Gugenheimer, J., Hirzle, T., Deubzer, M., Langbehn, E., Rukzio, E.: Rethinking redirected walking: on the use of curvature gains beyond perceptual limitations and revisiting bending gains. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 115–122 (2018). https://doi.org/10.1109/ISMAR.2018.00041

  104. Riva, G.: Virtual Reality in Neuro-psycho-physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, vol. 44. IOS press, Amsterdam (1997)

    Google Scholar 

  105. Sanei, S., Chambers, J.A.: EEG signal processing (2007)

    Google Scholar 

  106. Sevinc, V., Berkman, M.I.: Psychometric evaluation of simulator sickness questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020)

    Article  Google Scholar 

  107. Shin, J.E., Yoon, B., Kim, D., Woo, W.: A user-oriented approach to space-adaptive augmentation: the effects of spatial affordance on narrative experience in an augmented reality detective game. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445675

  108. Slater, M., Wilbur, S.: A framework for immersive virtual environments (five): speculations on the role of presence in virtual environments. Presence: Teleoperators Virtual Environ. 6(6), 603–616 (1997)

    Article  Google Scholar 

  109. So, R.H., Lo, W., Ho, A.T.: Effects of navigation speed on motion sickness caused by an immersive virtual environment. Hum. Factors: J. Hum. Factors Ergon. Soc. 43(3), 452–461 (2001)

    Article  Google Scholar 

  110. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 41, pp. 1138–1142. SAGE Publications Sage CA, Los Angeles, CA (1997)

    Google Scholar 

  111. Sugita, N., et al.: Quantitative evaluation of effects of visually-induced motion sickness based on causal coherence functions between blood pressure and heart rate. Displays 29(2), 167–175 (2008)

    Article  Google Scholar 

  112. Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments (2012)

    Google Scholar 

  113. Sun, Q., et al.: Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201294

  114. Swafford, N.T., Iglesias-Guitian, J.A., Koniaris, C., Moon, B., Cosker, D., Mitchell, K.: User, metric, and computational evaluation of foveated rendering methods. In: Proceedings of the ACM Symposium on Applied Perception, pp. 7–14 (2016)

    Google Scholar 

  115. Taylor, J., et al.: Articulated distance fields for ultra-fast tracking of hands interacting. ACM Trans. Graph. (TOG) 36(6), 1–12 (2017)

    Article  Google Scholar 

  116. Valente, L., Feijó, B., do Prado Leite, J.C.S., Clua, E.: A method to assess pervasive qualities in mobile games. Pers. Ubiquit. Comput. 22(4), 647–670 (2018)

    Google Scholar 

  117. Wang, L., Chen, W., Yang, W., Bi, F., Yu, F.R.: A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 8, 63514–63537 (2020). https://doi.org/10.1109/ACCESS.2020.2982224

    Article  Google Scholar 

  118. Warren, L.E., Bowman, D.A.: User experience with semi-natural locomotion techniques in virtual reality: the case of the virtuix omni. In: Proceedings of the 5th Symposium on Spatial User Interaction, p. 163. SUI 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3131277.3134359

  119. Web, T.N.: Fove’s \$250,000 kickstarter campaign wants to bring eye-tracking control to virtual reality (2021). https://thenextweb.com/news/foves-250000-kickstarter-campaign-wants-to-bring-eye-tracking-control-to-virtual-reality. Accessed 28 July 2021

  120. Weier, M., et al.: Foveated real-time ray tracing for head-mounted displays. Comput. Graph. Forum 35(7), 289–298 (2016)

    Article  Google Scholar 

  121. Xie, N., Ras, G., van Gerven, M., Doran, D.: Explainable deep learning: A field guide for the uninitiated. arXiv:2004.14545 (2020)

  122. Xu, L., et al.: Hypothalamic and gastric myoelectrical responses during vection-induced nausea in healthy Chinese subjects. Am. J. Physiol.-Endocrinol. Metab. 265(4), E578–E584 (1993)

    Article  Google Scholar 

  123. Yan, Y., Chen, K., Xie, Yu., Song, Y., Liu, Y.: The effects of weight on comfort of virtual reality devices. In: Rebelo, F., Soares, M.M. (eds.) AHFE 2018. AISC, vol. 777, pp. 239–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94706-8_27

    Chapter  Google Scholar 

  124. Yang, J., Guo, C., So, R., Cheung, R.: Effects of eye fixation on visually induced motion sickness: are they caused by changes in retinal slip velocity? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 55, pp. 1220–1224. SAGE Publications Sage CA, Los Angeles, CA (2011)

    Google Scholar 

  125. Yang, X., Wang, D., Hu, H., Yue, K.: P-31: visual fatigue assessment and modeling based on ECG and EOG caused by 2D and 3D displays. SID Symp. Digest Tech. Pap. 47(1), 1237–1240 (2016)

    Article  Google Scholar 

  126. Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., Hoberman, P.: Oculus VR best practices guide

    Google Scholar 

  127. Zhan, F., et al.: Sparse needlets for lighting estimation with spherical transport loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12830–12839 (2021)

    Google Scholar 

  128. Zielasko, D., Horn, S., Freitag, S., Weyers, B., Kuhlen, T.W.: Evaluation of hands-free HMD-based navigation techniques for immersive data analysis. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 113–119 (2016). https://doi.org/10.1109/3DUI.2016.7460040

  129. Zwicker, M., et al.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum (Proceedings of Eurographics - State of the Art Reports) 34(2), 667–681 (2015). https://doi.org/10/f7k6kj

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban W. G. Clua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clua, E.W.G. et al. (2023). Challenges for XR in Games. In: Santos, R.P.d., Hounsell, M.d.S. (eds) Grand Research Challenges in Games and Entertainment Computing in Brazil - GranDGamesBR 2020–2030. GranDGamesBR GranDGamesBR 2020 2021. Communications in Computer and Information Science, vol 1702. Springer, Cham. https://doi.org/10.1007/978-3-031-27639-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27639-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27638-5

  • Online ISBN: 978-3-031-27639-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics