Skip to main content

Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of Head and Neck Cancers with PET/CT Images

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13626))

Included in the following conference series:

Abstract

Automatic segmentation of head and neck cancer (HNC) tumors and lymph nodes plays a crucial role in the optimization treatment strategy and prognosis analysis. This study aims to employ nnU-Net for automatic segmentation and radiomics for recurrence-free survival (RFS) prediction using pretreatment PET/CT images in a multi-center HNC cohort of 883 patients (524 patients for training, 359 for testing) provided within the context of the HECKTOR MICCAI challenge 2022. A bounding box of the extended oropharyngeal region was retrieved for each patient with fixed size of 224 \(\times \) 224 \(\times \) 224 mm\(^{3}\). Then the 3D nnU-Net architecture was adopted to carry out automatic segmentation of both primary tumor and lymph nodes. From the predicted segmentation mask, ten conventional features and 346 standardized radiomics features were extracted for each patient. Three prognostic models were constructed containing conventional and radiomics features alone, and their combinations by multivariate CoxPH modelling. The statistical harmonization method, ComBat, was explored towards reducing multicenter variations. Dice score and C-index were used as evaluation metrics for segmentation and prognosis task, respectively. For segmentation task, we achieved a mean dice score of 0.7 for primary tumor and lymph nodes. For recurrence-free survival prediction, conventional and radiomics models obtained C-index values of 0.66 and 0.65 in the test set, respectively, while the combined model did not improve the prognostic performance (0.65).

Team name: RokieLab.

H. Xu and Y. Li—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021 automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) 3D Head and Neck Tumor Segmentation in PET/CT Challenge, pp. 1–37. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98253-9_1

    Chapter  Google Scholar 

  2. Andrearczyk, V., Oreiller, V., Depeursinge, A.: Oropharynx detection in PET-CT for tumor segmentation. Irish Mach. Vis. Image Process. 188 (2020)

    Google Scholar 

  3. Andrearczyk, V., et al.: Overview of the hecktor challenge at MICCAI 2022: automatic head and neck tumor segmentation and outcome prediction in pet/ct. In: Head and Neck Tumor Segmentation and Outcome Prediction. Springer, Cham (2023)

    Google Scholar 

  4. Bogowicz, M., et al.: Comparison of pet and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 56(11), 1531–1536 (2017)

    Article  Google Scholar 

  5. Bogowicz, M., Tanadini-Lang, S., Guckenberger, M., Riesterer, O.: Combined CT radiomics of primary tumor and metastatic lymph nodes improves prediction of loco-regional control in head and neck cancer. Sci. Rep. 9(1), 1–7 (2019)

    Article  Google Scholar 

  6. Bonner, J.A., et al.: Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 11(1), 21–28 (2010)

    Article  Google Scholar 

  7. Chajon, E., et al.: Salivary gland-sparing other than parotid-sparing in definitive head-and-neck intensity-modulated radiotherapy does not seem to jeopardize local control. Radiat. Oncol. 8(1), 1–9 (2013)

    Article  Google Scholar 

  8. Chen, J., et al.: Transunet: transformers make strong encoders for medical image segmentation (2021). https://doi.org/10.48550/ARXIV.2102.04306, https://arxiv.org/abs/2102.04306

  9. Goel, R., Moore, W., Sumer, B., Khan, S., Sher, D., Subramaniam, R.M.: Clinical practice in PET/CT for the management of head and neck squamous cell cancer. Am. J. Roentgenol. 209(2), 289–303 (2017)

    Article  Google Scholar 

  10. Harrell, F.E., Jr., Lee, K.L., Mark, D.B.: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996)

    Article  Google Scholar 

  11. Hatamizadeh, A., et al.: Unetr: transformers for 3d medical image segmentation (2021). https://doi.org/10.48550/ARXIV.2103.10504, https://arxiv.org/abs/2103.10504

  12. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  13. Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation (2018). https://doi.org/10.48550/ARXIV.1809.10486, https://arxiv.org/abs/1809.10486

  14. Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8(1), 118–127 (2007)

    Article  MATH  Google Scholar 

  15. Kubicek, G.J., et al.: FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head Neck Oncology 2(1), 1–7 (2010)

    Article  Google Scholar 

  16. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  17. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  18. Leijenaar, R.T., et al.: Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 52(7), 1391–1397 (2013)

    Article  Google Scholar 

  19. Murugesan, G.K., et al.: Head and neck primary tumor segmentation using deep neural networks and adaptive ensembling. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) 3D Head and Neck Tumor Segmentation in PET/CT Challenge, vol. 13209, pp. 224–235. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-98253-9_21

    Chapter  Google Scholar 

  20. Abdallah, N., et al.: Predicting progression-free survival from FDG PET/CT images in head and neck cancer : comparison of different pipelines and harmonization strategies in the HECKTOR 2021 challenge dataset. In: 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE (2022)

    Google Scholar 

  21. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

  22. Parkin, D.M., Bray, F., Ferlay, J., Pisani, P.: Global cancer statistics 2002. CA: Cancer J. Clin. 55(2), 74–108 (2005)

    Google Scholar 

  23. Picchio, M., et al.: Predictive value of pre-therapy 18F-FDG PET/CT for the outcome of 18F-FDG pet-guided radiotherapy in patients with head and neck cancer. Eur. J. Nucl. Med. Mol. Imaging 41(1), 21–31 (2014). https://doi.org/10.1007/s00259-013-2528-2

    Article  Google Scholar 

  24. Vallieres, M., et al.: Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 7(1), 1–14 (2017)

    Article  Google Scholar 

  25. Xie, J., Peng, Y.: The head and neck tumor segmentation using nnU-Net with Spatial and Channel ‘Squeeze & Excitation’ Blocks. In: Andrearczyk, V., Oreiller, V., Depeursinge, A. (eds.) HECKTOR 2020. LNCS, vol. 12603, pp. 28–36. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67194-5_3

    Chapter  Google Scholar 

  26. Xu, H., Lu, L., Hatt, M.: Comparison of progressive combat for harmonization of radiomics features in multi-center head and neck tumor FDG PET/CT dataset from HECKTOR challenge 2021 (2022)

    Google Scholar 

  27. Zwanenburg, A., Leger, S., Vallières, M., Löck, S.: Image biomarker standardisation initiative. arxiv 2016. arXiv preprint arXiv:1612.07003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Li, Y., Zhao, W., Quellec, G., Lu, L., Hatt, M. (2023). Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of Head and Neck Cancers with PET/CT Images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics