Skip to main content

Ensembled Autoencoder Regularization for Multi-structure Segmentation for Kidney Cancer Treatment

  • Conference paper
  • First Online:
Lesion Segmentation in Surgical and Diagnostic Applications (CuRIOUS 2022, KiPA 2022, MELA 2022)

Abstract

The kidney cancer is one of the most common cancer types, which treatment frequently include surgical intervention. However, surgery is in this case particularly challenging due to regional anatomical relations. Organ delineation can significantly improve surgical planning and execution, especially in an automated way that saves time and does not require skilled clinicians. In this contribution, we propose ensemble of two fully convolutional networks for segmentation of kidney, tumor, veins and arteries. While SegResNet architecture achieved better performance on tumor, the nnU-Net provided more precise segmentation for kidneys, arteries and veins. So in our proposed approach we combine these two networks, and further boost the performance by mixup augmentation. With mentioned approach we achieved 10th place in the KiPA2022 challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chow, W.H., Dong, L.M., Devesa, S.S.: Epidemiology and risk factors for kidney cancer. Nat. Rev. Urol. 7(5), 245–257 (2010)

    Article  Google Scholar 

  2. Dahle, D.O., Skauby, M., Langberg, C.W., Brabrand, K., Wessel, N., Midtvedt, K.: Renal cell carcinoma and kidney transplantation: a narrative review. Transplantation 106(1), e52–e63 (2022)

    Article  Google Scholar 

  3. Gazda, M., Bugata, P., Gazda, J., Hubacek, D., Hresko, D.J., Drotar, P.: Mixup augmentation for kidney and kidney tumor segmentation. In: Heller, N., Isensee, F., Trofimova, D., Tejpaul, R., Papanikolopoulos, N., Weight, C. (eds.) Kidney and Kidney Tumor Segmentation, pp. 90–97. Springer International Publishing, Cham (2022)

    Chapter  Google Scholar 

  4. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation (2021). https://doi.org/10.48550/ARXIV.2103.10504. https://arxiv.org/abs/2103.10504

  5. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Google Scholar 

  6. Ma, J., et al.: AbdomenCT-1K: Is abdominal organ segmentation a solved problem? (2020). https://doi.org/10.48550/ARXIV.2010.14808. https://arxiv.org/abs/2010.14808

  7. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization (2018). https://doi.org/10.48550/ARXIV.1810.11654. https://arxiv.org/abs/1810.11654

  8. Porpiglia, F., Fiori, C., Checcucci, E., Amparore, D., Bertolo, R.: Hyperaccuracy three-dimensional reconstruction is able to maximize the efficacy of selective clamping during robot-assisted partial nephrectomy for complex renal masses. Eur. Urol. 74(5), 651–660 (2018)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Shao, P., et al.: Laparoscopic partial nephrectomy with segmental renal artery clamping: technique and clinical outcomes. Eur. Urol. 59(5), 849–855 (2011)

    Google Scholar 

  11. Shao, P., et al.: Precise segmental renal artery clamping under the guidance of dual-source computed tomography angiography during laparoscopic partial nephrectomy. Eur. Urol. 62(6), 1001–1008 (2012)

    Google Scholar 

  12. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states (2018). https://doi.org/10.48550/ARXIV.1806.05236. https://arxiv.org/abs/1806.05236

  13. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2017). https://doi.org/10.48550/ARXIV.1710.09412. https://arxiv.org/abs/1710.09412

Download references

Acknowledgements

This work was supported by the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences under contract VEGA 1/0327/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Jozef Hresko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hresko, D.J., Kurej, M., Gazda, J., Drotar, P. (2023). Ensembled Autoencoder Regularization for Multi-structure Segmentation for Kidney Cancer Treatment. In: Xiao, Y., Yang, G., Song, S. (eds) Lesion Segmentation in Surgical and Diagnostic Applications. CuRIOUS KiPA MELA 2022 2022 2022. Lecture Notes in Computer Science, vol 13648. Springer, Cham. https://doi.org/10.1007/978-3-031-27324-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27324-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27323-0

  • Online ISBN: 978-3-031-27324-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics