Skip to main content

Part of the book series: Contributions to Management Science ((MANAGEMENT SC.))

  • 205 Accesses

Abstract

This chapter addresses the three fundamental data objects needed for CIB analysis: descriptors, descriptor variants, and cross-impact data. The basic aspects of their role were described in the method description in Chap. 3. These basic aspects will be deepened here by “dossiers” on the data objects. The dossiers discuss terminology, types, methodological requirements, and elicitation procedures commonly used in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Secondary autonomous descriptors (descriptors that only receive influences from autonomous descriptors) and secondary passive descriptors (descriptors that only influence passive descriptors) can also be defined. Secondary autonomous descriptors become autonomous descriptors when the original autonomous descriptors are removed from the matrix. Similarly, secondary passive descriptors become passive descriptors when the original passive descriptors are removed.

  2. 2.

    Inverse solutions occur regularly when CIB matrices consist entirely of descriptors with two variants and all judgment sections are exchange-symmetric, i.e., show the same numbers after swapping the order of the variants for both descriptors.

  3. 3.

    Three descriptors can be found in Vergara-Schmalbach et al. (2012, 2014). Forty-three descriptors were used by Weimer-Jehle et al. (2012).

  4. 4.

    A method for embedding disaggregated subsystems in a CIB matrix is discussed by Kunz (2018, Chapter III.3).

  5. 5.

    For the question of choosing the realistic range for the descriptor variants, see Sect. 6.2.4.

  6. 6.

    When using the CIB software ScenarioWizard, there is a limit of nine variants per descriptor (at the time of printing). As the statistics box “Descriptor variant numbers” shows, this does not lead to any practical restriction.

  7. 7.

    In 1966, prior to the first scientific publication on the cross-impact method, Theodore Gordon and Olaf Helmer developed the method’s basic concept and applied it for the first time in game entitled “Future,” which the Kaiser Aluminum and Chemical Company then distributed as a promotional gift (Gordon, 1994).

  8. 8.

    E.g., Kane (1972, “KSIM”), Enzer (1980, “INTERAX”), Honton et al. (1985, “BASICS”).

  9. 9.

    For the consistency matrix method, see Rhyne (1974), von Reibnitz (1987), Johansen (2018).

  10. 10.

    An example of the interval [–5…+5] is found in Lee and Geum (2017).

  11. 11.

    The rating interval [–2…+2] has been used by Wachsmuth (2015), Schmid et al. (2017), and Tori et al. (2020), among others.

  12. 12.

    E.g., BASICS (Honton et al., 1985).

  13. 13.

    MINT: A group of academic disciplines, consisting of mathematics, informatics, natural sciences, and technology.

  14. 14.

    Invariance property IO-1, Weimer-Jehle (2006: 343). For a proof see Weimer-Jehle (2009), Property XI.

  15. 15.

    The judgment group shown above could just as well have been rated [B1 B2] = [+1 0] to avoid double negation.

  16. 16.

    This basic openness does not prevent the descriptor variants from being regarded as of varying likelihood. However, a descriptor variant with probability 0 would hardly be a meaningful element of a CIB analysis.

  17. 17.

    For example, the scenario study could be commissioned by a ministry of the environment that rules out weakening its environmental legislation as a policy option and therefore wishes to examine only the effects of different levels of strengthening environmental legislation.

  18. 18.

    According to the Gaussian law of error propagation.

  19. 19.

    For example, Morphological Analysis, Field Anomaly Relaxation, BASICS, ScenarioManagement, and others.

  20. 20.

    scw files are project files of the CIB software ScenarioWizard.

  21. 21.

    For a cross-impact assessment [A3 Education focus: MINT -> B3 Economic growth: high = +2], for example, the justification “MINT education promotes economic development” would be a paraphrase, since it merely repeats in words what the cross-impact rating already expresses on its own. In contrast, an explanation should reveal the reasoning of the rater regarding the score; e.g., it could read “MINT-oriented education would, in the long run, increase the available human resources for corporate R&D departments and applied university research, thus supporting the innovation-based ‘business model’ of Somewhereland’s export economy.” (MINT education focuses on mathematics, informatics, natural sciences, and technology)

  22. 22.

    For instance, Hummel (2017), Brodecki et al. (2017, in combination with a workshop as elicitation format), Pregger et al. (2020).

  23. 23.

    Schmid et al. (2017). Schweizer and O’Neill (2014) also used telephone interviews among other forms for cross-impact elicitation.

  24. 24.

    Lloyd and Schweizer (2014), Chuvychkina (2017).

  25. 25.

    Cf. discourse rules according to Jürgen Habermas.

  26. 26.

    On the risk of groupthink in group-based scenario processes and the ability of CIB to avoid it, see Lloyd and Schweizer (2014).

  27. 27.

    Among the CIB studies reviewed by the author in which matrices were elicited by expert workshops, 11 studies included information on the number of participants in the workshops.

  28. 28.

    The lower value of the interval (1.5 min per processing field) occurred, for example, in a study in which all descriptors had only two variants, and in which the standardized judgment sections could mostly be assumed to be internal antisymmetric, so that predominantly only one rating per judgment section was required (Weimer-Jehle et al., 2012).

  29. 29.

    E.g., Weimer-Jehle et al. (2011), Meylan et al. (2013), Schweizer and O’Neill (2014), Brodecki et al. (2017).

References

  • Aretz, A., & Weimer-Jehle, W. (2004). Cross Impact Methode. In Der Beitrag der deutschen Stromwirtschaft zum europäischen Klimaschutz. Forum für Energiemodelle und energiewirtschaftliche Systemanalyse, Hrsg, LIT-Verlag.

    Google Scholar 

  • Ayandeban. (2016). Future scenarios facing Iran in the coming year 1395 (March 2016–March 2017) [in Persian]. Ayandeban Iran Futures Studies. www.ayandeban.com

  • Biß, K., Ernst, A., Gillessen, B., Gotzens, F., Heinrichs, H., Kunz, P., Schumann, D., Shamon, H., Többen, J., Vögele, S., & Hake, J. -F. (2017). Multimethod design for generating qualitative energy scenarios. STE Preprint 25/2017, Forschungszentrum Jülich.

    Google Scholar 

  • Blanchet, D. (1991). Estimating the relationship between population growth and aggregate economic growth in developing countries: Methodological problems. In Consequences of rapid population growth in developing countries. Taylor & Francis.

    Google Scholar 

  • Brodecki, L., Fahl, U., Tomascheck, J., Wiesmeth, M., Gutekunst, F., Siebenlist, A., Salah, A., Baumann, M., Brethauer, L., Horn, R., Hauser, W., Sonnberger, M., León, C., Pfenning, U., & O’Sullivan, M. (2017). Analyse der Energie-Autarkiepotenziale für Baden-Württemberg mittels Integrierter Energiesystemmodellierung. BWPLUS Report, State of Baden-Württemberg.

    Google Scholar 

  • Cabrera Méndez, A. A., Puig López, G., & Valdez Alejandre, F.J. (2010). Análisis al plan national de desarrollo - una visión prospectiva. XV Congreso international de contaduría, administratión e informática, México.

    Google Scholar 

  • Centre for Workforce Intelligence. (2014). Scenario generation—Enhancing scenario generation and quantification. CfWI technical paper series no. 7. See also: Willis G, Cave S, Kunc M (2018) Strategic Workforce Planning in Healthcare: A multi-methodology approach. European Journal of Operational Research, 267, 250–263.

    Google Scholar 

  • Chuvychkina, I. (2017). Die Perspektiven des Energiedialoges EU-Russland—eine wissenschaftliche Szenarioanalyse. Dissertation. Universität Bremen.

    Google Scholar 

  • Drakes, C., Cashman, A., Kemp-Benedict, E., & Laing, T. (2020). Global to small island; a cross-scale foresight scenario exercise. Foresight, 22(5/6), 579–598. https://doi.org/10.1108/FS-02-2020-0012

    Article  Google Scholar 

  • Drakes, C., Laing, T., Kemp-Benedict, E., & Cashman, A. (2017). Caribbean Scenarios 2050—CoLoCarSce Report. CERMES Technical Report No. 82.

    Google Scholar 

  • Duden. (1994). Das Große Fremdwörterbuch. Duden-Verlag.

    Google Scholar 

  • Enzer, S. (1980). INTERAX—An interactive model for studying future business environments. Technological Forecasting and Social Change, 17(Part I:141–159 / Part II), 211–242.

    Article  Google Scholar 

  • Ernst, A., Biß, K., Shamon, H., Schumann, D., & Heinrichs, H. (2018). Benefits and challenges of participatory methods in qualitative energy scenario development. Technological Forecasting and Social Change, 127, 245–257.

    Article  Google Scholar 

  • Fink, A., Schlake, O., & Siebe, A. (2002). Erfolg durch Szenario-Management—Prinzip und Werkzeuge der strategischen Vorausschau. Campus.

    Google Scholar 

  • Förster, G. (2002). Szenarien einer liberalisierten Stromversorgung. Akademie für Technikfolgenabschätzung.

    Google Scholar 

  • Fuchs, G., Fahl, U., Pyka, A., Staber, U., Vögele, S., & Weimer-Jehle, W. (2008). Generating innovation scenarios using the cross-impact methodology (Discussion-Papers Series No. 007-2008). Department of Economics, University of Bremen.

    Google Scholar 

  • Gordon, T. J. (1994). Cross-impact method. In The millenium project: Futures research methodology. ISBN: 978-0981894119 .

    Google Scholar 

  • Gordon, T. J., & Hayward, H. (1968). Initial experiments with the cross impact matrix method of forecasting. Futures, 1(2), 100–116.

    Article  Google Scholar 

  • Honton, E. J., Stacey, G. S., & Millet, S. M. (1985). Future scenarios—The BASICS computational method, economics and policy analysis occasional paper (Vol. 44). Batelle Columbus Division.

    Google Scholar 

  • Hummel, E. (2017). Das komplexe Geschehen des Ernährungsverhaltens—Erfassen, Darstellen und Analysieren mit Hilfe verschiedener Instrumente zum Umgang mit Komplexität. Dissertation, University of Gießen.

    Google Scholar 

  • Jenssen, T., & Weimer-Jehle, W. (2012). Mehr als die Summe der einzelnen Teile—Konsistente Szenarien des Wärmekonsums als Reflexionsrahmen für Politik und Wissenschaft. GAIA, 21(4), 290–299.

    Article  Google Scholar 

  • Johansen, I. (2018). Scenario modelling with morphological analysis. Technological Forecasting and Social Change, 126, 116–125.

    Article  Google Scholar 

  • Kalaitzi, D., Matopoulos, A., et al. (2017). Next generation technologies for networked Europe—Report on trends and key factors. EU-Programm Mapping the path to future supply chains, NEXT-NET Project report D2.1.

    Google Scholar 

  • Kane, J. (1972). A primer for a new cross impact language-KSIM. Technological Forecasting and Social Change, 4, 129–142.

    Article  Google Scholar 

  • Kemp-Benedict, E., de Jong, W., & Pacheco, P. (2014). Forest futures: Linking global paths to local conditions. In P. Katila, G. Galloway, W. de Jong, P. Pacheco, & G. Mery (Eds.), Forest under pressure—Local responses to global issues. Part IV—Possible future pathways. IUFRO World Series Vol. 32.

    Google Scholar 

  • Kosow, H., Weimer-Jehle, W., León, C. D., & Minn, F. (2022). Designing synergetic and sustainable policy mixes—A methodology to address conflictive environmental issues. Environmental Science and Policy, 130, 36–46.

    Article  Google Scholar 

  • Kunz, P. (2018). Discussion of methodological extensions for cross-impact-balance studies. STE preprint 01/2018, Forschungszentrum Jülich.

    Google Scholar 

  • Kurniawan, J. H. (2018). Discovering alternative scenarios for sustainable urban transportation. In 48th Annual conference of the Urban Affairs Association, April 4-7, 2018, Toronto, Canada

    Google Scholar 

  • Lambe, F., Carlsen, H., Jürisoo, M., Weitz, N., Atteridge, A., Wanjiru, H., & Vulturius, G. (2018). Understanding multi-level drivers of behaviour change—A Cross-impact Balance analysis of what influences the adoption of improved cookstoves in Kenya (SEI working paper). Stockholm Environment Institute.

    Google Scholar 

  • Lee, H., & Geum, Y. (2017). Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP. Technology Forecasting & Social Change, 117, 12–24. https://doi.org/10.1016/j.techfore.2017.01.016

    Article  Google Scholar 

  • Lloyd, E. A., & Schweizer, V. J. (2014). Objectivity and a comparison of methodological scenario approaches for climate change research. Synthese, 191(10), 2049–2088.

    Article  Google Scholar 

  • Meylan, G., Seidl, R., & Spoerri, A. (2013). Transitions of municipal solid waste management. Part I: Scenarios of Swiss waste glass-packaging disposal. Resources, Conservation and Recycling, 74, 8–19.

    Article  Google Scholar 

  • Mitchell, R. E. (2018). The human dimensions of climate risk in Africa’s low and lower-middle income countries. Master thesis, University of Waterloo.

    Google Scholar 

  • Mowlaei, M., Talebian, H., Talebian, S., Gharari, F., Mowlaei, Z., & Hassanpour, H. (2016). Scenario building for Iran short-time future—Results of Iran Futures Studies Project. Finding futures in uncertainties. In 6th International postgraduate conference, Department of Applied Social Sciences, Hong Kong Polytechnic University, September 22-24, 2016.

    Google Scholar 

  • Mphahlele, M. I. (2012). Interactive scenario analysis technique for forecasting E-skills development. Dissertation. Tshwane University of Technology, Pretoria, South Africa.

    Google Scholar 

  • Musch, A. -K., & von Streit, A. (2017). Szenarien, Zukunftswünsche, Visionen—Ergebnisse der partizipativen Szenarienkonstruktion in der Modellregion Oberland. INOLA report no. 7, Ludwig-Maximilians University.

    Google Scholar 

  • Nakićenović, N., et al. (2000). Special Report on Emissions Scenarios. Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.

    Google Scholar 

  • National Research Council. (1986). Population growth and economic development: Policy questions. National Academy Press.

    Google Scholar 

  • Oviedo-Toral, L.-P., François, D. E., & Poganietz, W.-R. (2021). Challenges for energy transition in poverty-ridden regions—The case of rural Mixteca, Mexico. Energies, 14, 2596. https://doi.org/10.3390/en14092596

    Article  Google Scholar 

  • Pregger, T., Naegler, T., Weimer-Jehle, W., Prehofer, S., & Hauser, W. (2020). Moving towards socio-technical scenarios of the German energy transition—Lessons learned from integrated energy scenario building. Climatic Change, 162, 1743–1762. https://doi.org/10.1007/s10584-019-02598-0

    Article  Google Scholar 

  • Regett, A., Zeiselmair, A., Wachinger, K., & Heller, C. (2017). Merit Order Netz-Ausbau 2030. Teil 1: Szenario-Analyse—potenzielle zukünftige Rahmenbedingungen für den Netzausbau. Project report, Forschungsstelle für Energiewirtschaft (FfE).

    Google Scholar 

  • Renn, O., Deuschle, J., Jäger, A., & Weimer-Jehle, W. (2007). Leitbild Nachhaltigkeit—Eine normativ-funktionale Konzeption und ihre Umsetzung. VS-Verlag.

    Google Scholar 

  • Renn, O., Deuschle, J., Jäger, A., & Weimer-Jehle, W. (2009). A normative-functional concept of sustainability and its indicators. International Journal of Global Environmental Issues, 9(4), 291–317.

    Article  Google Scholar 

  • Rhyne, R. (1974). Technological forecasting within alternative whole futures projections. Technological Forecasting and Social Change, 6, 133–162.

    Article  Google Scholar 

  • Saner, D., Beretta, C., Jäggi, B., Juraske, R., Stoessel, F., & Hellweg, S. (2016). FoodPrints of households. International Journal of Life Cycle Assessment, 21, 654–663. https://doi.org/10.1007/s11367-015-0924-5

    Article  Google Scholar 

  • Saner, D., Blumer, Y. B., Lang, D. J., & Köhler, A. (2011). Scenarios for the implementation of EU waste legislation at national level and their consequences for emissions from municipal waste incineration. Resources, Conservation and Recycling, 57, 67–77.

    Article  Google Scholar 

  • Sardesai, S., Kamphues, J., Parlings, M., et al. (2018). Next generation technologies for networked Europe—Report on future scenarios generation. EU-Programm Mapping the path to future supply chains, NEXT-NET project report D2.2.

    Google Scholar 

  • Schmid, E., Pechan, A., Mehnert, M., & Eisenack, K. (2017). Imagine all these futures: On heterogeneous preferences and mental models in the German energy transition. Energy Research & Social Science, 27, 45–56. https://doi.org/10.1016/j.erss.2017.02.012

    Article  Google Scholar 

  • Schmidt-Scheele, R. (2020). The plausibility of future scenarios. Conceptualising an unexplored criterion in scenario planning. Transcript Independent Academic Publishing. See also: Scheele, R. (2019). Applause for scenarios!? An explorative study of ‘plausibility’ as assessment criterion in scenario planning. Dissertation, University of Stuttgart.

    Google Scholar 

  • Schneider, M., & Gill, B. (2016). Biotechnology versus agroecology—Entrenchments and surprise at a 2030 forecast scenario workshop. Science and Public Policy, 43, 74–84. https://doi.org/10.1093/scipol/scv021

    Article  Google Scholar 

  • Schütze, M., Seidel, J., Chamorro, A., & León, C. (2018). Integrated modelling of a megacity water system—The application of a transdisciplinary approach to the Lima metropolitan area. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2018.03.045

  • Schweizer, V. J., & Kriegler, E. (2012). Improving environmental change research with systematic techniques for qualitative scenarios. Environmental Research Letters, 7.

    Google Scholar 

  • Schweizer, V. J., & Kurniawan, J. H. (2016). Systematically linking qualitative elements of scenarios across levels, scales, and sectors. Environmental Modelling & Software, 79, 322–333. https://doi.org/10.1016/j.envsoft.2015.12.014

    Article  Google Scholar 

  • Schweizer, V. J., & O’Neill, B. C. (2014). Systematic construction of global socioeconomic pathways using internally consistent element combinations. Climatic Change, 122, 431–445.

    Article  Google Scholar 

  • Shojachaikar A (2016) Qualitative but systematic envisioning of socio-technical transitions: Using cross-impact balance method to construct future scenarios of transitions. In International sustainability transitions conference, September 6-9, 2016.

    Google Scholar 

  • Slawson, D. (2015). A qualitative cross-impact balance analysis of the hydrological impacts of land use change on channel morphology and the provision of stream channel services. In Proceedings of the international conference on river and stream restoration—Novel approaches to assess and rehabilitate modified rivers. June 30–Juli 2, 2015, Wageningen, The Netherlands (pp. 350–354).

    Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.

    Article  Google Scholar 

  • Tori, S., te Boveldt, G., Keseru, I., & Macharis, C. (2020). City-specific future urban mobility scenarios—Determining the impacts of emerging urban mobility environments. Horizon 2020 project “Sprout” Delivery 3.1. https://sprout-civitas.eu/

  • Uraiwong, P. (2013). Failure analysis of malfunction water resources project in the Northeastern Thailand—Integrated mental models and project life cycle approach. Kochi University of Technology.

    Google Scholar 

  • Venjakob, J., Schüver, D., & Gröne, M. -C. (2017). Leitlinie Nachhaltige Energieinfrastrukturen, Teilprojekt Transformation und Vernetzung von Infrastrukturen. Project report “Energiewende Ruhr”, Wuppertal Institut für Klima, Umwelt, Energie.

    Google Scholar 

  • Vergara-Schmalbach, J. C., Fontalvo Herrera, T., & Morelos Gómez, J. (2012). Aplicación de la Planeación por Escenarios en Unidades Académicas: Caso Programa de Administración Industrial. Escenarios, 10(1), 40–48.

    Article  Google Scholar 

  • Vergara-Schmalbach, J. C., Fontalvo Herrera, T., & Morelos Gómez, J. (2014). La planeación por escenarios aplicada sobre políticas urbanas: El caso del mercado central de Cartagena (Columbia). Revista Facultad de Ciencias Económicas, XXII(1), 23–33.

    Article  Google Scholar 

  • Vögele, S., Rübbelke, D., Govorukha, K., & Grajewski, M. (2019). Socio-technical scenarios for energy intensive industries: The future of steel production in Germany in context of international competition and CO2 reduction. STE Preprint 5/2017, Forschungszentrum Jülich.

    Google Scholar 

  • von Reibnitz, U. (1987). Szenarien—Optionen für die Zukunft. McGraw-Hill.

    Google Scholar 

  • Wachsmuth, J. (2015). Cross-sectoral integration in regional adaptation to climate change via participatory scenario development. Climatic Change, 132, 387–400. https://doi.org/10.1007/s10584-014-1231-z

    Article  Google Scholar 

  • Weimer-Jehle, W. (2006). Cross-impact balances: A system-theoretical approach to cross-impact analysis. Technological Forecasting and Social Change, 73(4), 334–361.

    Article  Google Scholar 

  • Weimer-Jehle, W. (2009). Properties of cross-impact balance analysis. arXiv:0912.5352v1.

    Google Scholar 

  • Weimer-Jehle, W., Buchgeister, J., Hauser, W., Kosow, H., Naegler, T., Poganietz, W.-R., Pregger, T., Prehofer, S., von Recklinghausen, A., Schippl, J., & Vögele, S. (2016). Context scenarios and their usage for the construction of socio-technical energy scenarios. Energy, 111, 956–970. https://doi.org/10.1016/j.energy.2016.05.073

    Article  Google Scholar 

  • Weimer-Jehle, W., Deuschle, J., & Rehaag, R. (2012). Familial and societal causes of juvenile obesity—A qualitative model on obesity development and prevention in socially disadvantaged children and adolescents. Journal of Public Health, 20(2), 111–124.

    Article  Google Scholar 

  • Weimer-Jehle, W., Wassermann, S., & Fuchs, G. (2010). Erstellung von Energie- und Innovations-Szenarien mit der Cross-Impact-Bilanzanalyse: Internationalisierung von Innovationsstrategien im Bereich der Kohlekraftwerkstechnologie. 11. Symposium Energieinnovation, TU Graz, February 10–12, 2010.

    Google Scholar 

  • Weimer-Jehle, W., Wassermann, S., & Kosow, H. (2011). Konsistente Rahmendaten für Modellierungen und Szenariobildung im Umweltbundesamt. Gutachten für das Umweltbundesamt (UBA), UBA-Texte 20/2011, Dessau-Roßlau.

    Google Scholar 

  • Wiek, A., Keeler, L. W., Schweizer, V., & Lang, D. J. (2013). Plausibility indications in future scenarios. International Journal of Foresight and Innovation Policy, 9, 133–147.

    Article  Google Scholar 

  • Zimmermann, T., Gößling-Reisemann, S., & Isenmann, R. (2017). Ermittlung von Ressourcenschonungspotenzialen in der Nichteisenmetallindustrie durch eine Zukunftsanalyse nach der Delphi-Methode. UBA Report, project DelphiNE.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Weimer-Jehle .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weimer-Jehle, W. (2023). Data in CIB. In: Cross-Impact Balances (CIB) for Scenario Analysis. Contributions to Management Science. Springer, Cham. https://doi.org/10.1007/978-3-031-27230-1_6

Download citation

Publish with us

Policies and ethics