Skip to main content

Knowledge Acquisition and Completion for Long-Term Human-Robot Interactions Using Knowledge Graph Embedding

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

In Human-Robot Interaction (HRI) systems, a challenging task is sharing the representation of the operational environment, fusing symbolic knowledge and perceptions, between users and robots. With the existing HRI pipelines, users can teach the robots some concepts to increase their knowledge base. Unfortunately, the data coming from the users are usually not enough dense for building a consistent representation. Furthermore, the existing approaches are not able to incrementally build up their knowledge base, which is very important when robots have to deal with dynamic contexts. To this end, we propose an architecture to gather data from users and environments in long-runs of continual learning. We adopt Knowledge Graph Embedding techniques to generalize the acquired information with the goal of incrementally extending the robot’s inner representation of the environment. We evaluate the performance of the overall continual learning architecture by measuring the capabilities of the robot of learning entities and relations coming from unknown contexts through a series of incremental learning sessions.

E. Bartoli and F. Argenziano—These two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljundi, R., Kelchtermans, K., Tuytelaars, T.: Task-free continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11254–11263 (2019)

    Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  3. Gemignani, G., Capobianco, R., Bastianelli, E., Bloisi, D.D., Iocchi, L., Nardi, D.: Living with robots: interactive environmental knowledge acquisition. Robot. Auton. Syst. 78, 1–16 (2016)

    Article  Google Scholar 

  4. Ji, S., Pan, S., Cambria, E., Marttinen, P., Philip, S.Y.: A survey on knowledge graphs: representation, acquisition, and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2), 494–514 (2021)

    Article  MathSciNet  Google Scholar 

  5. Kolve, E., et al.: AI2-THOR: an interactive 3D environment for visual AI. arXiv preprint arXiv:1712.05474 (2017)

  6. Laird, J.E., et al.: Interactive task learning. IEEE Intell. Syst. 32(4), 6–21 (2017)

    Article  Google Scholar 

  7. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2018). https://doi.org/10.1109/TPAMI.2017.2773081

    Article  Google Scholar 

  8. Lindblom, J., Andreasson, R.: Current challenges for UX evaluation of human-robot interaction. In: Schlick, C., Trzcieliński, S. (eds.) Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, pp. 267–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41697-7_24

    Chapter  Google Scholar 

  9. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  10. Perdomo, J., Zrnic, T., Mendler-Dünner, C., Hardt, M.: Performative prediction. In: International Conference on Machine Learning, pp. 7599–7609. PMLR (2020)

    Google Scholar 

  11. Pronobis, A.: Semantic mapping with mobile robots. Ph.D. thesis, KTH Royal Institute of Technology (2011)

    Google Scholar 

  12. Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: 2012 IEEE International Conference on Robotics and Automation, pp. 3515–3522. IEEE (2012)

    Google Scholar 

  13. Randelli, G., Bonanni, T.M., Iocchi, L., Nardi, D.: Knowledge acquisition through human-robot multimodal interaction. Intel. Serv. Robot. 6(1), 19–31 (2013)

    Article  Google Scholar 

  14. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  15. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Argenziano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartoli, E., Argenziano, F., Suriani, V., Nardi, D. (2023). Knowledge Acquisition and Completion for Long-Term Human-Robot Interactions Using Knowledge Graph Embedding. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics