Skip to main content

Multi-agent Cooperative Argumentation in Arg2P

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

This work focuses on cooperative argumentation and conversation in multi-agent systems by introducing an extension of the Arg2P technology that enables parallelisation and distribution of the argumentation process. The computational model and the implementation underpinning the Arg2P technology are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://arg2p.apice.unibo.it.

  2. 2.

    At the time of writing, only grounded semantics is fully implemented.

  3. 3.

    The order of inclusion affects the steps required to converge, not the final state of the system.

  4. 4.

    Sources available at https://github.com/tuProlog/arg2p-kt.

  5. 5.

    https://akka.io/.

  6. 6.

    https://doc.akka.io/docs/akka/current/typed/cluster-singleton.html.

  7. 7.

    https://doc.akka.io/docs/akka/current/typed/cluster-sharding.html.

References

  1. Andrighetto, G., Governatori, G., Noriega, P., van der Torre, L.W.: Normative multi-agent systems, Dagstuhl Follow-Ups, vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013). http://www.dagstuhl.de/dagpub/978-3-939897-51-4

  2. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/S0269888911000166

    Article  Google Scholar 

  3. Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.: Handbook of Formal Argumentation. College Publications, London (2018). https://www.collegepublications.co.uk/handbooks/?00003

  4. Besnard, P., et al.: Introduction to structured argumentation. Argument Comput. 5(1), 1–4 (2014). https://doi.org/10.1080/19462166.2013.869764

    Article  Google Scholar 

  5. Bryant, D., Krause, P.J., Vreeswijk, G.: Argue tuProlog: a lightweight argumentation engine for agent applications. In: Computational Models of Argument. Frontiers in Artificial Intelligence and Applications, vol. 144, pp. 27–32. IOS Press (2006). https://ebooks.iospress.nl/publication/2929

  6. Calegari, R., Contissa, G., Lagioia, F., Omicini, A., Sartor, G.: Defeasible systems in legal reasoning: a comparative assessment. In: Araszkiewicz, M., Rodríguez-Doncel, V. (eds.) Legal Knowledge and Information Systems, JURIX 2019: The Thirty-second Annual Conference, Frontiers in Artificial Intelligence and Applications, vol. 322, pp. 169–174. IOS Press (2019). https://doi.org/10.3233/FAIA190320

  7. Calegari, R., Contissa, G., Pisano, G., Sartor, G., Sartor, G.: Arg-tuProlog: a modular logic argumentation tool for PIL. In: Villata, S., Harašta, J., Křemen, P. (eds.) Legal Knowledge and Information Systems, JURIX 2020: The Thirty-third Annual Conference. Frontiers in Artificial Intelligence and Applications, vol. 334, pp. 265–268 (2020). https://doi.org/10.3233/FAIA200880

  8. Calegari, R., Omicini, A., Sartor, G.: Computable law as argumentation-based MAS. In: Calegari, R., Ciatto, G., Denti, E., Omicini, A., Sartor, G. (eds.) WOA 2020–21st Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2706, pp. 54–68. Sun SITE Central Europe, RWTH Aachen University, Aachen, Germany (2020). http://ceur-ws.org/Vol-2706/paper10.pdf, 21st Workshop “From Objects to Agents” (WOA 2020), Bologna, Italy, 14–16 September 2020. Proceedings

  9. Calegari, R., Pisano, G., Omicini, A., Sartor, G.: Arg2P: an argumentation framework for explainable intelligent systems. J. Logic Comput. 32(2), 369–401 (2022). https://doi.org/10.1093/logcom/exab089, Special Issue from the 35th Italian Conference on Computational Logic (CILC 2020)

  10. Carrera, Á., Iglesias, C.A.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015). https://doi.org/10.1007/s10462-015-9435-9

    Article  Google Scholar 

  11. Ciatto, G., Calegari, R., Omicini, A.: 2P- KT: a logic-based ecosystem for symbolic AI. SoftwareX 16(100817), 1–7 (2021). https://doi.org/10.1016/j.softx.2021.100817

    Article  MATH  Google Scholar 

  12. Cossentino, M., Lopes, S., Nuzzo, A., Renda, G., Sabatucci, L.: A comparison of the basic principles and behavioural aspects of Akka, JaCaMo and Jade development frameworks. In: Proceedings of the 19th Workshop “From Objects to Agents”. CEUR Workshop Proceedings, vol. 2215, pp. 133–141. CEUR-WS.org (2018). http://ceur-ws.org/Vol-2215/paper_21.pdf

  13. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuProlog. Sci. Comput. Program. 57(2), 217–250 (2005). https://doi.org/10.1016/j.scico.2005.02.001

    Article  Google Scholar 

  14. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

    Article  MathSciNet  MATH  Google Scholar 

  15. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Logic Program. 4(1–2), 95–138 (2004). https://doi.org/10.1017/S1471068403001674

    Article  MathSciNet  MATH  Google Scholar 

  16. Hewitt, C., Bishop, P.B., Steiger, R.: A universal modular ACTOR formalism for artificial intelligence. In: 3rd International Joint Conference on Artificial Intelligence, pp. 235–245. William Kaufmann (1973). http://ijcai.org/Proceedings/73/Papers/027B.pdf

  17. Hulstijn, J., van der Torre, L.W.: Combining goal generation and planning in an argumentation framework. In: International Workshop on Non-monotonic Reasoning (NMR 2004), pp. 212–218 (2004). https://www.pims.math.ca/science/2004/NMR/papers/paper28.pdf

  18. Jung, H., Tambe, M., Kulkarni, S.: Argumentation as distributed constraint satisfaction: applications and results. In: 5th International Conference on Autonomous Agents (Agents 2001), pp. 324–331 (2001). https://doi.org/10.1145/375735.376322

  19. Krippendorff, K.: Intrinsic motivation and human-centred design. Theor. Issues Ergon. Sci. 5(1), 43–72 (2004). https://doi.org/10.1080/1463922031000086717

    Article  Google Scholar 

  20. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frameworks. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 105–129. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0_6

    Chapter  Google Scholar 

  21. Modgil, S., Prakken, H.: The ASPIC\(^{+}\) framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014). https://doi.org/10.1080/19462166.2013.869766

    Article  Google Scholar 

  22. Oliva, E., McBurney, P., Omicini, A.: Co-argumentation artifact for agent societies. In: Rahwan, I., Parsons, S., Reed, C. (eds.) ArgMAS 2007. LNCS (LNAI), vol. 4946, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78915-4_3

    Chapter  MATH  Google Scholar 

  23. Oliva, E., Viroli, M., Omicini, A., McBurney, P.: Argumentation and artifact for dialogue support. In: Rahwan, I., Moraitis, P. (eds.) ArgMAS 2008. LNCS (LNAI), vol. 5384, pp. 107–121. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00207-6_7

    Chapter  Google Scholar 

  24. Pisano, G., Calegari, R., Omicini, A., Sartor, G.: A mechanism for reasoning over defeasible preferences in Arg2P. In: Monica, S., Bergenti, F. (eds.) CILC 2021 - Italian Conference on Computational Logic. Proceedings of the 36th Italian Conference on Computational Logic. CEUR Workshop Proceedings, Parma, Italy, vol. 3002, pp. 16–30. CEUR-WS (2021). http://ceur-ws.org/Vol-3002/paper10.pdf

  25. Vasconcelos, W.W., Sabater, J., Sierra, C., Querol, J.: Skeleton-based agent development for electronic institutions. In: 1st International Joint Conference on Autonomous Agents and Multiagent Systems: Part 2 (AAMAS 2002), pp. 696–703. ACM, New York (2002). https://doi.org/10.1145/544862.544911

Download references

Acknowledgements

This work was supported by the H2020 ERC Project “CompuLaw” (G.A. 833647).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pisano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pisano, G., Calegari, R., Omicini, A. (2023). Multi-agent Cooperative Argumentation in Arg2P. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics