Skip to main content

Primate Movements Across the Nutritional Landscapes of Africa

  • Chapter
  • First Online:
Movement Ecology of Afrotropical Forest Mammals

Abstract

To find suitable food, organisms must navigate through a matrix of resources that vary in their concentrations of nutrients, toxins, and digestion inhibitors while also avoiding multiple hazards such as food competitors and predators. Wild primates eat a variety of foods that vary in their availability and quality both spatially and seasonally, and their movements differ accordingly. Here, we review the movement ecologies of primates in African forests with a focus on nutrient acquisition. We discuss how primates find different nutrients using a variety of sensory adaptations and adapt their movement to meet specific nutritional needs. We discuss future directions for research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, T. M., Hopcraft, J. G. C., Eby, S., Ritchie, M., Grace, J. B., & Olff, H. (2010). Landscape-scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology, 91, 1519–1529.

    Article  PubMed  Google Scholar 

  • Arseneau-Robar, T. J. M., Changasi, A. H., Turner, E., & Teichroeb, J. A. (2021). Diet and activity budget in Colobus angolensis ruwenzorii at Nabugabo, Uganda: Are they energy maximizers? Folia Primatologica, 92(1), 35–48.

    Article  Google Scholar 

  • Bartumeus, F., Catalan, J., Fulco, U. L., Lyra, M. L., & Viswanathan, G. M. (2002). Optimizing the encounter rate in biological interactions: Lévy versus Brownian strategies. Physical Review Letters, 88(9), 1–4.

    Article  Google Scholar 

  • Brenes-Arguedas, T. & Coley, P.D. (2005). Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species. Oikos, 410-420.

    Google Scholar 

  • Brown, R. (1828). A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. The Philosophical Magazine, 4(21), 161–173.

    Article  Google Scholar 

  • Bryant, J. P., Chapin, F. S., & Klein, D. R. (1983). Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos, 40(3), 357–368.

    Article  CAS  Google Scholar 

  • Bryer, M. A. H., Chapman, C. A., Raubenheimer, D., Lambert, J. E., & Rothman, J. M. (2015). Macronutrient and energy contributions of insects to the diet of a frugivorous monkey (Cercopithecus ascanius). International Journal of Primatology, 36(4), 839–854.

    Article  Google Scholar 

  • Chapman, C. A. (1990). Ecological constraints on group size in three species of neotropical primates. Folia Primatologica, 55(1), 1–9.

    Article  CAS  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., & McDowell, L. R. (2003). Variation in the nutritional value of primate foods: Among trees, time periods, and areas. International Journal of Primatology, 24(2), 317–333.

    Article  Google Scholar 

  • Chism, J., & Rowell, T. E. (1988). The natural history of patas monkeys. In A. Gautier-Hion, F. Bourliere, J.-P. Gautier, & J. Kingdon (Eds.), A primate radiation: Evolutionary biology of the African guenons (pp. 412–438). Cambridge University Press.

    Google Scholar 

  • Clutton-Brock, T. (1973). Feeding levels and feeding sites of red colobus (Colobus badius tephrosceles) in the Gombe National Park. Folia Primatologica, 19(5), 368–379.

    Article  CAS  Google Scholar 

  • Clutton-Brock, T. H., Harvey, P. H. (1980). Primates, brains and ecology. Journal of Zoology 190(3), 309–323

    Google Scholar 

  • Clutton‐Brock, T. H., Harvey, P. H. (1977). Primate ecology and social organization. Journal of Zoology 183(1), 1–39.

    Google Scholar 

  • Coley, P. D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53(2), 209–234.

    Google Scholar 

  • Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27(1), 305–335.

    Article  Google Scholar 

  • Coley, P. D., Endara, M.-J., & Kursar, T. A. (2018). Consequences of interspecific variation in defenses and herbivore host choice for the ecology and evolution of Inga, a speciose rainforest tree. Oecologia, 187(2), 361–376.

    Article  PubMed  Google Scholar 

  • Conklin-Brittain, N. L., Wrangham, R. W., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. International Journal of Primatology, 19, 971–998.

    Article  Google Scholar 

  • Couvreur, T. L. (2015). Odd man out: Why are there fewer plant species in African rain forests? Plant Systematics and Evolution, 301(5), 1299–1313.

    Article  Google Scholar 

  • Dasilva, G. L. (1992). The Western black-and-white colobus as a low-energy strategist: Activity budgets, energy expenditure and energy intake. Journal of Animal Ecology, 61(1), 79–91.

    Article  Google Scholar 

  • Disotell, T. R. (1996). The phylogeny of Old World monkeys. Evolutionary Anthropology, 5(1), 18–24.

    Article  Google Scholar 

  • Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410(6826), 363–366.

    Article  CAS  PubMed  Google Scholar 

  • Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology: Issues, News, and Reviews, 10(5), 171–186.

    Article  Google Scholar 

  • Dudt, J. F., & Shure, D. J. (1994). The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology, 75(1), 86–98.

    Article  Google Scholar 

  • Dunbar, R. I. M., & Dunbar, E. P. (1974). Ecological relations and niche separation between sympatric terrestrial primates in Ethiopia. Folia Primatologica, 21(1), 36–60.

    Article  CAS  Google Scholar 

  • Dunham, N. T., & Lambert, A. L. (2016). The role of leaf toughness on foraging efficiency in Angola black and white colobus monkeys (Colobus angolensis palliatus). American Journal of Physical Anthropology, 161(2), 343–354.

    Google Scholar 

  • Elgart-Berry, A. (2004). Fracture toughness of mountain gorilla (Gorilla gorilla beringei) food plants. American Journal of Primatology, 62(4), 275–285.

    Article  PubMed  Google Scholar 

  • Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., Wallis, I. R., & Lindenmayer, D. B. (2009). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology, 20(4), 685–690.

    Article  Google Scholar 

  • Fernandez-Duque, E., & van der Heide, G. (2013). Dry season resources and their relationship with owl monkey (Aotus azarae) feeding behavior, demography, and life history. International Journal of Primatology, 34(4), 752–769.

    Article  Google Scholar 

  • Fleagle, J. G. (2013). Primate adaptation and evolution. Academic.

    Google Scholar 

  • Fleagle, J. G., & Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Surinam monkeys. American Journal of Physical Anthropology, 52(3), 301–314.

    Article  Google Scholar 

  • Frankie, G. W., Baker, H. G., & Opler, P. A. (1974). Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Journal of Ecology, 62(3), 881–919.

    Article  Google Scholar 

  • Ganas, J., & Robbins, M. M. (2005). Ranging behavior of the mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda: a test of the ecological constraints model. Behavioral Ecology and Sociobiology, 58(3), 277–288.

    Google Scholar 

  • Ganzhorn, J. U. (1995) Low-level forest disturbance effects on primary production, leaf chemistry and lemur populations. Ecology, 76, 2084–2096.

    Google Scholar 

  • Ganzhorn, J. U. (2002). Distribution of a folivorous lemur in relation to seasonally varying food resources: Integrating quantitative and qualitative aspects of food characteristics. Oecologia, 131(3), 427–435.

    Article  PubMed  Google Scholar 

  • Garber, P. A. (1987). Foraging strategies among living primates. Annual Review of Anthropology, 16(1), 339–364.

    Article  Google Scholar 

  • Gebo, D. L., & Chapman, C. A. (1995). Positional behavior in five sympatric old world monkeys. American Journal of Physical Anthropology, 97(1), 49–76.

    Article  CAS  PubMed  Google Scholar 

  • Glander, K. E. (1982). The impact of plant secondary compounds on primate feeding behavior. American Journal of Physical Anthropology, 25(S3), 1–18.

    Article  Google Scholar 

  • Grueter, C. C., Li, D., Ren, B., & Li, M. (2013). Overwintering strategy of Yunnan snub-nosed monkeys: adjustments in activity scheduling and foraging patterns. Primates, 54(2), 125–135.

    Google Scholar 

  • Hanya, G., Tsuji, Y., & Grueter, C. C. (2013). Fruiting and flushing phenology in Asian tropical and temperate forests: Implications for primate ecology. Primates, 54(2), 101–110.

    Article  PubMed  Google Scholar 

  • Houle, A., & Wrangham, R. W. (2021). Contest competition for fruit and space among wild chimpanzees in relation to the vertical stratification of metabolizable energy. Animal Behaviour, 175, 231–246.

    Article  Google Scholar 

  • Houle, A., Chapman, C. A., & Vickery, W. L. (2007). Intratree variation in fruit production and implications for primate foraging. International Journal of Primatology, 28(6), 1197–1217.

    Article  Google Scholar 

  • Houle, A., Chapman, C. A., & Vickery, W. L. (2010). Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behavioral Ecology and Sociobiology, 64(3), 429–441.

    Article  Google Scholar 

  • Houle, A., Conklin-Brittain, N. L., & Wrangham, R. W. (2014). Vertical stratification of the nutritional value of fruit: Macronutrients and condensed tannins: Intratree variations in macronutrients. American Journal of Primatology, 76(12), 1207–1232.

    Article  CAS  PubMed  Google Scholar 

  • Humphries, N. E., Queiroz, N., Dyer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghton, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., & Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465(7301), 1066–1069.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, K. D. (1992). Positional behavior of Pan troglodytes in the Mahale Mountains and Gombe stream National Parks, Tanzania. American Journal of Physical Anthropology, 87(1), 83–105.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, K. D., Cant, J. G. H., Gebo, D. L., Rose, M. D., Walker, S. E., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37(4), 363–387.

    Article  Google Scholar 

  • Iaconelli, S., & Simmen, B. (2002). Taste thresholds and suprathreshold responses to tannin-rich plant extracts and quinine in a primate species (Microcebus murinus). Journal of Chemical Ecology, 28(11), 2315–2326.

    Article  CAS  PubMed  Google Scholar 

  • Isbell, L. A. (1998). Diet for a small primate: Insectivory and gummivory in the (large) patas monkey (Erythrocebus patas pyrrhonotus). American Journal of Primatology, 45(4), 381–398.

    Article  CAS  PubMed  Google Scholar 

  • Isbell, L. A., & Chism, J. (2007). Distribution and abundance of patas monkeys (Erythrocebus patas) in Laikipia, Kenya, 1979–2004. American Journal of Primatology, 69(11), 1223–1235.

    Article  PubMed  Google Scholar 

  • Isbell, L. A., Pruetz, J. D., Lewis, M., & Young, T. P. (1998). Locomotor activity differences between sympatric patas monkeys (Erythrocebus patas) and vervet monkeys (Cercopithecus aethiops): Implications for the evolution of long hindlimb length in Homo. American Journal of Physical Anthropology, 105(2), 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Isbell, L. A., Pruetz, J. D., Lewis, M., & Young, T. P. (1999). Rank differences in ecological behavior: A comparative study of patas monkeys (Erythrocebus patas) and vervets (Cercopithecus aethiops). International Journal of Primatology, 20, 257–272.

    Article  Google Scholar 

  • Isbell, L. A., Rothman, J. M., Young, P. J., & Rudolph, K. (2013). Nutritional benefits of crematogaster mimosae ants and acacia drepanolobium gum for patas monkeys and vervets in laikipia, Kenya. American Journal of Physical Anthropology, 150(2), 286–300.

    Article  PubMed  Google Scholar 

  • Jan, R., Asaf, S., Numan, M., Lubna, & Kim, K.-M. (2021). Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agronomy, 11(5), 1–31.

    Article  Google Scholar 

  • Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86(6), 1183–1205.

    Article  Google Scholar 

  • Janson, C. H. (1988). Intra-specific food competition and primate social structure: A synthesis. Behaviour, 105(1–2), 1–17.

    Article  Google Scholar 

  • Janson, C. H., & Goldsmith, M. L. (1995). Predicting group size in primates: Foraging costs and predation risks. Behavioral Ecology, 6(3), 326–336.

    Article  Google Scholar 

  • Janson, C. H., & Byrne, R. (2007). What wild primates know about resources: opening up the black box. Animal Cognition, 10(3), 357–367.

    Google Scholar 

  • Johnson, C. A., Raubenheimer, D., Chapman, C. A., Tombak, K. J., Reid, A. J., & Rothman, J. M. (2017). Macronutrient balancing affects patch departure by guerezas (Colobus guereza). American Journal of Primatology, 79(4), 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Kay, R. N. B., & Davies, A. G. (1994). Digestive physiology. In P. Newton, J. Oates, M. Teaford, & P. Waterman (Eds.), Colobine monkeys: Their ecology, behaviour and evolution (pp. 229–249). Cambridge University Press.

    Google Scholar 

  • Kinzey, W. G., & Norconk, M. A. (1993). Physical and chemical properties of fruit and seeds eaten by Pithecia and Chiropotes in Surinam and Venezuela. International Journal of Primatology, 14(2), 207–227.

    Article  Google Scholar 

  • Lambert, J. E., & Rothman, J. M. (2015). Fallback foods, optimal diets, and nutritional targets: Primate responses to varying food availability and quality. Annual Review of Anthropology, 44(1), 493–512.

    Article  Google Scholar 

  • Larson, S. G. (2018). Nonhuman primate locomotion. American Journal of Physical Anthropology, 165(4), 705–725.

    Article  PubMed  Google Scholar 

  • Lewis, M. C., & O’Riain, M. J. (2017). Foraging profile, activity budget and spatial ecology of exclusively natural-foraging chacma baboons (Papio ursinus) on the cape peninsula, South Africa. International Journal of Primatology, 38(4), 751–779.

    Article  Google Scholar 

  • Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., Van Der Heijden, G. M., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., & Bastin, J. F. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 1–14.

    Article  Google Scholar 

  • Linder, H. P., de Klerk, H. M., Born, J., Burgess, N. D., Fjeldså, J., & Rahbek, C. (2012). The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. Journal of Biogeography, 39(7), 1189–1205.

    Article  Google Scholar 

  • Lucas, P. W., Copes, L., Constantino, P. J., Vogel, E. R., Chalk, J., Talebi, M., Landis, M., & Wagner, M. (2012). Measuring the toughness of primate foods and its ecological value. International Journal of Primatology, 33(3), 598–610.

    Article  Google Scholar 

  • Marsh, K. J., Wallis, I. R., & Foley, W. J. (2005). Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology, 86(11), 2946–2954.

    Article  Google Scholar 

  • Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28(6), 1219–1235.

    Article  Google Scholar 

  • Marshall, A. J., Beaudrot, L., & Wittmer, H. U. (2014). Responses of primates and other frugivorous vertebrates to plant resource variability over space and time at Gunung Palung National Park. International Journal of Primatology, 35(6), 1178–1201.

    Article  Google Scholar 

  • Masi, S., Cipolletta, C., & Robbins, M. M. (2009). Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. American Journal of Primatology, 71(2), 91–100.

    Article  PubMed  Google Scholar 

  • Matsuda, I., Clauss, M., Tuuga, A., Sugau, J., Hanya, G., Yumoto, T., Bernard, H., & Hummel, J. (2017). Factors affecting leaf selection by foregut-fermenting proboscis monkeys: New insight from in vitro digestibility and toughness of leaves. Scientific Reports, 7(1), 1–10.

    Article  Google Scholar 

  • Masette, M., Isabirye Basuta, G., Baranga, D., & Chemurot, M. (2015). Levels of tannins in fruit diet of grey-cheeked mangabeys (Lophocebus ugandae, Groves) in Lake Victoria Basin forest reserves. Journal of Ecology and The Natural Environment, 7(5), 146–157

    Google Scholar 

  • McGraw, W. S. (1998a). Comparative locomotion and habitat use of six monkeys in the tai Forest, Ivory Coast. American Journal of Physical Anthropology, 105, 493–510.

    Article  CAS  PubMed  Google Scholar 

  • McGraw, W. S. (1998b). Posture and support use of old-world monkeys (Cercopithecidae): The influence of foraging strategies, activity patterns, and the spatial distribution of preferred food items. American Journal of Primatology, 46(3), 229–250.

    Article  CAS  PubMed  Google Scholar 

  • McKey, D. (1974). Adaptive patterns in alkaloid physiology. The American Naturalist, 108(961), 305–320.

    Article  Google Scholar 

  • Milton, K. (1980). The foraging strategy of howler monkeys: A study in primate economics. Columbia University Press.

    Google Scholar 

  • Milton, K. (1981). Distribution patterns of tropical plant foods as an evolutionary stimulus to primate mental development. The American Naturalist, 83(3), 534–548.

    Google Scholar 

  • Milton, K., & May, M. L. (1976). Body weight, diet and home range area in primates. Nature, 259(5543), 459–462

    Google Scholar 

  • Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy, J. J., Willis, R. H., & Foley, W. J. (2004). Antiherbivore Chemistry of Eucalyptus--Cues and Deterrents for Marsupial Folivores. Journal of Chemical Ecology, 30(9), 1743–1769.

    Google Scholar 

  • Moore, B. D., Andrew, R. L., Külheim, C., & Foley, W. J. (2013). Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist, 201(3), 733–750.

    Article  PubMed  Google Scholar 

  • Nakagawa, N. (1999). Differential habitat utilization by patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) living sympatrically in northern Cameroon. American Journal of Primatology, 49(3), 243–264.

    Article  CAS  PubMed  Google Scholar 

  • Napier, J. R., & Walker, A. C. (1967). Vertical clinging and leaping – A newly recognized category of locomotor behavior of primates. Folia Primatologica, 6(3–4), 204–219.

    Google Scholar 

  • Nevo, O., & Ayasse, M. (2020). Fruit scent: Biochemistry, ecological function, and evolution. In J.-M. Mérillon & K. G. Ramawat (Eds.), Co-evolution of secondary metabolites (pp. 403–425). Springer International Publishing.

    Chapter  Google Scholar 

  • Nevo, O., Valenta, K., Razafimandimby, D., Melin, A. D., Ayasse, M., & Chapman, C. A. (2018). Frugivores and the evolution of fruit colour. Biology Letters, 14(9), 1–4.

    Article  Google Scholar 

  • Nevo, O., Razafimandimby, D., Valenta, K., Jeffrey, J. A. J., Reisdorff, C., Chapman, C. A., Ganzhorn, J. U., & Ayasse, M. (2019). Signal and reward in wild fleshy fruits: Does fruit scent predict nutrient content? Ecology and Evolution, 9(18), 10534–10543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niinemets, Ü. (2007). Photosynthesis and resource distribution through plant canopies. Plant, Cell and Environment, 30(9), 1052–1071.

    Article  CAS  PubMed  Google Scholar 

  • Niinemets, U., Kull, O., & Tenhunen, J. D. (1998). An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance. Tree Physiology, 18(10), 681–696.

    Article  PubMed  Google Scholar 

  • Oates, J. F., Swain, T., & Zantovska, J. (1977). Secondary compounds and food selection by colobus monkeys. Biochemical Systematics and Ecology, 5(4), 317–321.

    Article  CAS  Google Scholar 

  • Oftedal, O. T., Whiten, A., Southgate, D., van Soest, P., Widdowson, E. M., Whiten, A., & Bone, Q. (1991). The nutritional consequences of foraging in primates: The relationship of nutrient intakes to nutrient requirements. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 334(1270), 161–170.

    Article  CAS  PubMed  Google Scholar 

  • Peñuelas, J., & Llusià, J. (2004). Plant VOC emissions: Making use of the unavoidable. Trends in Ecology and Evolution, 19(8), 402–404.

    Article  PubMed  Google Scholar 

  • Provenza, F. D., Kimball, B. A., & Villalba, J. J. (2000). Roles of odor, taste, and toxicity in the food preferences of lambs: Implications for mimicry in plants. Oikos, 88(2), 424–432.

    Article  Google Scholar 

  • Raubenheimer, D., Machovsky-Capuska, G. E., Chapman, C. A., & Rothman, J. M. (2015). Geometry of nutrition in field studies: An illustration using wild primates. Oecologia, 177(1), 223–234.

    Article  PubMed  Google Scholar 

  • Reyna-Hurtado, R., Teichroeb, J. A., Bonnell, T. R., Hernández-Sarabia, R. U., Vickers, S. M., Serio-Silva, J. C., Sicotte, P., & Chapman, C. A. (2018). Primates adjust movement strategies due to changing food availability. Behavioral Ecology, 29(2), 368–376.

    Article  Google Scholar 

  • Rosati, A. G. (2017). Foraging Cognition: Reviving the Ecological Intelligence Hypothesis. Trends in Cognitive Sciences, 21(9), 691–702

    Google Scholar 

  • Ruivo, L. V. P., Stone, A. I., & Fienup, M. (2017). Reproductive status affects the feeding ecology and social association patterns of female squirrel monkeys (Saimiri collinsi) in an Amazonian rainforest. American Journal of Primatology, 79(6), 1–11.

    Article  Google Scholar 

  • Sánchez-Solano, K. G., Reynoso-Cruz, J. E., Guevara, R., Morales-Mávil, J. E., Laska, M., & Hernández-Salazar, L. T. (2022). Non-visual senses in fruit selection by the mantled howler monkey (Alouatta palliata). Primates, 63(3), 293–303.

    Article  PubMed  Google Scholar 

  • Scharf, H. R., Hooten, M. B., Wilson, R. R., Durner, G. M., & Atwood, T. C. (2019). Accounting for phenology in the analysis of animal movement. Biometrics, 75(3), 810–820.

    Article  PubMed  Google Scholar 

  • Schreier, A. L., & Grove, M. (2010). Ranging patterns of hamadryas baboons: Random walk analyses. Animal Behaviour, 80(1), 75–87.

    Article  Google Scholar 

  • Snaith, T. V., & Chapman, C. A. (2007). Primate group size and interpreting socioecological models: Do folivores really play by different rules? Evolutionary Anthropology: Issues, News, and Reviews, 16(3), 94–106.

    Article  Google Scholar 

  • Stutz, R. S., Croak, B. M., Proschogo, N., Banks, P. B., & McArthur, C. (2017). Olfactory and visual plant cues as drivers of selective herbivory. Oikos, 126(2), 259–268.

    Article  Google Scholar 

  • Sueur, C. (2011). A non-lévy random walk in chacma baboons: What does it mean? PLoS One, 6(1), 1–5.

    Article  Google Scholar 

  • Takahashi, M. Q., Rothman, J. M., Raubenheimer, D., & Cords, M. (2019). Dietary generalists and nutritional specialists: Feeding strategies of adult female blue monkeys (Cercopithecus mitis) in the Kakamega Forest, Kenya. American Journal of Primatology, 81(7), 1–15.

    Article  Google Scholar 

  • Teichroeb, J. A., & Sicotte, P. (2009). Test of the ecological-constraints model on ursine colobus monkeys (Colobus vellerosus) in Ghana. American Journal of Primatology, 71(1), 49–59.

    Article  PubMed  Google Scholar 

  • Terborgh, J. (1983). Five New World primates a study in comparative ecology. Princeton University Press.

    Google Scholar 

  • Terborgh, J., & Stern, M. (1987). The surreptitious life of the saddle-backed tamarin. American Scientist, 75(3), 260–269.

    Google Scholar 

  • Thomas, S. C. (1991). Population densities and patterns of habitat use among anthropoid primates of the Ituri Forest, Zaire. Biotropica, 23(1), 68–83.

    Article  Google Scholar 

  • Tosi, A. J., Detwiler, K. M., & Disotell, T. R. (2005). X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). Molecular Phylogenetics and Evolution, 36(1), 58–66.

    Article  CAS  PubMed  Google Scholar 

  • Trapanese, C., Meunier, H., & Masi, S. (2019). What, where and when: Spatial foraging decisions in primates. Biological Reviews, 94(2), 483–502.

    Article  PubMed  Google Scholar 

  • Turchin, P. (1996). Fractal analyses of animal movement: A critique. Ecology, 77(7), 2086–2090.

    Article  Google Scholar 

  • Usongo, L. I., & Amubode, F. O. (2001). Nutritional ecology of Preuss’s red colobus monkey (Colobus badius preussi) in Korup National Park, Cameroon. African Journal of Ecology, 39(2), 121–125.

    Article  Google Scholar 

  • Uwimbabazi, M., Wrangham, R. W., Machanda, Z. P., Conklin-Brittain, N. L., Rothman, J. M., & Basuta, G. I. (2016). Variation in energy intake of female chimpanzees: Comparing estimates based on feeding time versus energy ingestion rates. PeerJ Inc.

    Google Scholar 

  • Uwimbabazi, M., Rothman, J. M., Basuta, G. I., Machanda, Z. P., Conklin-Brittain, N. L., & Wrangham, R. W. (2019). Influence of fruit availability on macronutrient and energy intake by female chimpanzees. African Journal of Ecology, 57(4), 454–465.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Schaik, C. P. V., & Janson, C. H. (1988). Recognizing the many faces of primate food competition: Methods. Behaviour, 105(1–2), 165–186.

    Article  Google Scholar 

  • van Schaik, C., Terborgh, J., & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 27, 353–377.

    Article  Google Scholar 

  • Vancutsem, C., Achard, F., Pekel, J. F., Vieilledent, G., Carboni, S., Simonetti, D., Gallego, J., Aragao, L. E., & Nasi, R. (2021). Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Science Advances, 7(10), eabe1603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Viswanathan, G., Afanasyev, V., Buldyrev, S., Murphy, E., Prince, P. A., & Stanley, H. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 449, 1044–1048.

    Google Scholar 

  • Vonthron, S., Perrin, C., & Soulard, C. T. (2020). Foodscape: A scoping review and a research agenda for food security-related studies. PLoS One, 15, e0233218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterman, P. G., Ross, J. A. M., & Mckey, D. B. (1984). Factors affecting levels of some phenolic compounds, digestibility, and nitrogen content of the mature leaves of Barteria fistulosa (Passifloraceae). Journal of Chemical Ecology, 10(3), 387–401.

    Article  CAS  PubMed  Google Scholar 

  • Windley, H. R., Starrs, D., Stalenberg, E., Rothman, J. M., Ganzhorn, J. U., & Foley, W. J. (2022). Plant secondary metabolites and primate food choices: A meta-analysis and future directions. American Journal of Primatology, 84, 1–18.

    Article  Google Scholar 

  • Wrangham, R. W., Gittleman, J. L., & Chapman, C. A. (1993). Constraints on group size in primates and carnivores: Population density and day-range as assays of exploitation competition. Behavioral Ecology and Sociobiology, 32(3), 199–209.

    Article  Google Scholar 

  • Wright, S. J. (1996). Phenological responses to seasonality in tropical forest plants. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical Forest Plant ecophysiology (pp. 440–460). Springer US.

    Chapter  Google Scholar 

  • Wright, B. W., Ulibarri, L., O’Brien, J., Sadler, B., Prodhan, R., Covert, H. H., & Nadler, T. (2008). It’s tough out there: variation in the toughness of ingested leaves and feeding behavior among four Colobinae in Vietnam. International Journal of Primatology, 29(6), 1455–1466.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma G. Thurau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thurau, E.G., Lowry, B.E., Nkurunungi, J.B., Rothman, J.M. (2023). Primate Movements Across the Nutritional Landscapes of Africa. In: Reyna-Hurtado, R., Chapman, C.A., Melletti, M. (eds) Movement Ecology of Afrotropical Forest Mammals. Springer, Cham. https://doi.org/10.1007/978-3-031-27030-7_7

Download citation

Publish with us

Policies and ethics