Skip to main content

Tail Bounds for Sums of Independent Two-Sided Exponential Random Variables

  • Conference paper
  • First Online:
High Dimensional Probability IX

Part of the book series: Progress in Probability ((PRPR,volume 80))

  • 274 Accesses

Abstract

We establish upper and lower bounds with matching leading terms for tails of weighted sums of two-sided exponential random variables. This extends Janson’s recent results for one-sided exponentials.

TT’s research supported in part by NSF grant DMS-1955175.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bercu, B. Delyon, E. Rio, Concentration Inequalities for Sums and Martingales. SpringerBriefs in Mathematics (Springer, Cham, 2015)

    Google Scholar 

  2. S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities. A Nonasymptotic Theory of Independence. With a Foreword by Michel Ledoux (Oxford University Press, Oxford, 2013)

    Google Scholar 

  3. Y. Chen, K.W. Ng, Q. Tang, Weighted sums of subexponential random variables and their maxima. Adv. Appl. Probab. 37(2), 510–522 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Eskenazis, On extremal sections of subspaces of Lp. Discret. Comput. Geom. 65(2), 489–509 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Eskenazis, P. Nayar, T. Tkocz, Gaussian mixtures: entropy and geometric inequalities. Ann. Probab. 46(5), 2908–2945 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Foss, T. Konstantopoulos, S. Zachary, Discrete and continuous time modulated random walks with heavy-tailed increments. J. Theor. Probab. 20(3), 581–612 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Foss, D. Korshunov, S. Zachary, An Introduction to Heavy-Tailed and Subexponential Distributions, 2nd edn. Springer Series in Operations Research and Financial Engineering (Springer, New York, 2013)

    Google Scholar 

  8. E.D. Gluskin, S. Kwapień, Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math. 114(3), 303–309 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Hitczenko, S. Montgomery-Smith, A note on sums of independent random variables, in Advances in Stochastic Inequalities (Atlanta, GA, 1997). Contemp. Math., vol. 234, Amer. Math. Soc., Providence, RI (1999), pp.69–73

    Google Scholar 

  10. G. Jameson, A simple proof of Stirling’s formula for the gamma function. Math. Gaz. 99(544), 68–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Janson, Tail bounds for sums of geometric and exponential variables. Stat. Probab. Lett. 135, 1–6 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Li, M. Madiman, A combinatorial approach to small ball inequalities for sums and differences. Comb. Probab. Comput. 28(1), 100–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Nayar, T. Tkocz, The unconditional case of the complex S-inequality. Israel J. Math. 197(1), 99–106 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Nayar, T. Tkocz, S-inequality for certain product measures. Math. Nachr. 287(4), 398–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Nayar, T. Tkocz, On a convexity property of sections of the cross-polytope. Proc. Am. Math. Soc. 148(3), 1271–1278 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.H. Nguyen, V.H. Vu, Small ball probability, inverse theorems, and applications, in Erdös Centennial. Bolyai Society Mathematical Studies, vol. 25 (János Bolyai Mathematical Society, Budapest, 2013), pp. 409–463

    Google Scholar 

  17. K. Oleszkiewicz, Precise moment and tail bounds for Rademacher sums in terms of weak parameters. Israel J. Math. 203(1), 429–443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Paouris, P. Valettas, A Gaussian small deviation inequality for convex functions. Ann. Probab. 46(3), 1441–1454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Paouris, P. Valettas, Variance estimates and almost Euclidean structure. Adv. Geom. 19(2), 165–189 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to an anonymous referee for many valuable comments, leading in particular to the remarks in Sects. 4.2 and 4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Tkocz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Tkocz, T. (2023). Tail Bounds for Sums of Independent Two-Sided Exponential Random Variables. In: Adamczak, R., Gozlan, N., Lounici, K., Madiman, M. (eds) High Dimensional Probability IX. Progress in Probability, vol 80. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-26979-0_5

Download citation

Publish with us

Policies and ethics