Skip to main content

Perovskites as Catalyst Precursor for Hydrogen Production from Ammonia Decomposition

  • Chapter
  • First Online:
Metal-Halide Perovskite Semiconductors

Abstract

Nickel and cobalt lanthanum-based perovskites prepared by self-combustion method were adequate catalytic precursors in the ammonia decomposition reaction for obtaining hydrogen. The fuel-to-metal nitrates molar ratio, calcination temperature, and the metal substitution clearly affected the catalytic properties of the perovskites. In addition, generating non-precursor species during synthesis and small metal size were two factors which significantly influenced catalytic activity. Thus, with a molar ratio equal to 1, LaNiO3 perovskite can be obtained with few impurities, suitable physicochemical properties, and high basicity. Additionally, a calcination temperature of 650 °C for nickel perovskite led to small and well-dispersed Ni0 after reduction. On the other hand, bimetallic perovskites generated metallic Ni and/or Co in larger size, higher impurities, and lower active sites than pure nickel perovskite, which decreased the ammonia conversion. Self-combustion method was found to be effective and robust synthesis procedure to obtain catalyst precursors to generate very active catalysts after reduction for hydrogen production from NH3 at significantly lower temperature than those reported in bibliography. The nickel perovskite-derived catalyst, calcined at 650 °C, yielded excellent H2 production from ammonia decomposition. In particular, at 450 °C almost 100% of the ammonia was converted over the reduced LaNiO3 under study. Furthermore, these materials displayed admirable performance and stability after 1 day of reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cechetto, V., Di Felice, L., Medrano, J. A., et al. (2021). H2 production via ammonia decomposition in a catalytic membrane reactor. Fuel Processing Technology, 216, 106772. https://doi.org/10.1016/j.fuproc.2021.106772

    Article  Google Scholar 

  2. Valera-Medina, A., Amer-Hatem, F., Azad, A. K., et al. (2021). Review on ammonia as a potential fuel: From synthesis to economics. Energy and Fuels, 35, 6964–7029.

    Article  Google Scholar 

  3. Lucentini, I., Garcia, X., Vendrell, X., & Llorca, J. (2021b). Review of the decomposition of ammonia to generate hydrogen. Industrial and Engineering Chemistry Research, 60, 18560–18611. https://doi.org/10.1021/acs.iecr.1c00843

    Article  Google Scholar 

  4. Pinzón, M., Avilés-García, O., de la Osa, A. R., et al. (2022a). New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition. Sustainable Chemistry and Pharmacy, 25, 100615. https://doi.org/10.1016/j.scp.2022.100615

    Article  Google Scholar 

  5. Pinzón, M., Romero, A., de Lucas, C. A., et al. (2021a). Hydrogen production by ammonia decomposition over ruthenium supported on SiC catalyst. Journal of Industrial and Engineering Chemistry, 94, 326–335. https://doi.org/10.1016/j.jiec.2020.11.003

    Article  Google Scholar 

  6. Pinzón, M., Romero, A., de Lucas-Consuegra, A., et al. (2022b). COx-free hydrogen production from ammonia at low temperature using Co/SiC catalyst: Effect of promoter. Catalysis Today, 390–391, 34–47. https://doi.org/10.1016/j.cattod.2021.12.005

    Article  Google Scholar 

  7. Pinzón, M., Sánchez-Sánchez, A., Sánchez, P., et al. (2021b). Ammonia as a carrier for hydrogen production by using lanthanum based perovskites. Energy Conversion and Management, 246, 114681. https://doi.org/10.1016/j.enconman.2021.114681

    Article  Google Scholar 

  8. Huang, C., Li, H., Yang, J., et al. (2019). Ce0.6Zr0.3Y0.1O2 solid solutions-supported Ni Co bimetal nanocatalysts for NH3 decomposition. Applied Surface Science, 478, 708–716. https://doi.org/10.1016/j.apsusc.2019.01.269

    Article  Google Scholar 

  9. Wu, Z. W., Li, X., Qin, Y. H., et al. (2020). Ammonia decomposition over SiO2-supported Ni–Co bimetallic catalyst for COx-free hydrogen generation. International Journal of Hydrogen Energy, 45, 15263–15269. https://doi.org/10.1016/j.ijhydene.2020.04.007

    Article  Google Scholar 

  10. Muroyama, H., Saburi, C., Matsui, T., & Eguchi, K. (2012). Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Applied Catalysis A: General, 443–444, 119–124. https://doi.org/10.1016/j.apcata.2012.07.031

    Article  Google Scholar 

  11. Tran, D. T., Nguyen, T. H., Jeong, H., et al. (2022). Recent engineering advances in nanocatalysts for NH3-to-H2 conversion technologies. Nano Energy, 94, 106929.

    Article  Google Scholar 

  12. Pinzón, M., Sánchez-Sánchez, A., Romero, A., et al. (2022c). Self-combustion Ni and Co-based perovskites as catalyst precursors for ammonia decomposition. Effect of Ce and Mg doping. Fuel, 323, 124384. https://doi.org/10.1016/J.FUEL.2022.124384

    Article  Google Scholar 

  13. Da Silva, A. A. A., Da Costa, L. O. O., Mattos, L. V., & Noronha, F. B. (2013). The study of the performance of Ni-based catalysts obtained from LaNiO3 perovskite-type oxides synthesized by the combustion method for the production of hydrogen by reforming of ethanol. Catalysis Today, 213, 25–32. https://doi.org/10.1016/j.cattod.2013.04.033

    Article  Google Scholar 

  14. Sadabadi, H., Allahkaram, S. R., Kordijazi, A., et al. (2021). Structural characterization of LaCoO3 perovskite nanoparticles synthesized by sol–gel autocombustion method. Engineering Reports, 3, 91–96. https://doi.org/10.1002/eng2.12335

    Article  Google Scholar 

  15. Liu, L., Zhang, Z., Das, S., et al. (2020). LaNiO3 as a precursor of Ni/La2O3 for reverse water-gas shift in DBD plasma: Effect of calcination temperature. Energy Conversion and Management, 206, 112475. https://doi.org/10.1016/j.enconman.2020.112475

    Article  Google Scholar 

  16. Sihaib, Z., Puleo, F., Pantaleo, G., et al. (2019). The effect of citric acid concentration on the properties of LaMnO3 as a catalyst for hydrocarbon oxidation. Catalysts, 9, 226. https://doi.org/10.3390/catal9030226

    Article  Google Scholar 

  17. Li, Y., Wen, J., Ali, A. M., et al. (2018). Size structure–catalytic performance correlation of supported Ni/MCF-17 catalysts for COx-free hydrogen production. Chemical Communications, 54, 6364–6367. https://doi.org/10.1039/C8CC01884G

    Article  Google Scholar 

  18. Okura, K., Okanishi, T., Muroyama, H., et al. (2016). Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on-site generation of hydrogen. ChemCatChem, 8, 2988–2995. https://doi.org/10.1002/cctc.201600610

    Article  Google Scholar 

  19. Li, X., Li, D., Tian, H., et al. (2017). Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Applied Catalysis B: Environmental, 202, 683–694. https://doi.org/10.1016/j.apcatb.2016.09.071

    Article  Google Scholar 

  20. Civera, A., Pavese, M., Saracco, G., & Specchia, V. (2003). Combustion synthesis of perovskite-type catalysts for natural gas combustion. Catalysis Today, 83, 199–211. https://doi.org/10.1016/S0920-5861(03)00220-7

    Article  Google Scholar 

  21. Omari, E., Makhloufi, S., & Omari, M. (2017). Preparation by sol–gel method and characterization of Co-doped LaNiO3 perovskite. Journal of Inorganic and Organometallic Polymers and Materials, 27, 1466–1472. https://doi.org/10.1007/s10904-017-0604-y

    Article  Google Scholar 

  22. Santos, M. d. S., RCR, N., Noronha, F. B., et al. (2018). Perovskite as catalyst precursors in the partial oxidation of methane: The effect of cobalt, nickel and pretreatment. Catalysis Today, 299, 229–241. https://doi.org/10.1016/j.cattod.2017.06.027

    Article  Google Scholar 

  23. Zhang, T., & Liu, Q. (2020). Mesostructured cellular foam silica supported bimetallic LaNi1-xCoxO3 catalyst for CO2 methanation. International Journal of Hydrogen Energy, 45, 4417–4426. https://doi.org/10.1016/j.ijhydene.2019.12.006

    Article  Google Scholar 

  24. Lucentini, I., García Colli, G., Luzi, C. D., et al. (2021a). Catalytic ammonia decomposition over Ni-Ru supported on CeO2 for hydrogen production: Effect of metal loading and kinetic analysis. Applied Catalysis B: Environmental, 286. https://doi.org/10.1016/j.apcatb.2021.119896

  25. Chang, F., Wu, H., Van Der, P. R., et al. (2019). Effect of pore confinement of NaNH2 and KNH2 on hydrogen generation from ammonia. Journal of Physical Chemistry C, 123, 21487–21496. https://doi.org/10.1021/acs.jpcc.9b03878

    Article  Google Scholar 

  26. Su, Q., Gu, L., Yao, Y., et al. (2017). Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Applied Catalysis B: Environmental, 201, 451–460. https://doi.org/10.1016/j.apcatb.2016.08.051

    Article  Google Scholar 

  27. Wang, L., Yi, Y., Zhao, Y., et al. (2015). NH3 Decomposition for H2 generation: Effects of cheap metals and supports on plasma-catalyst synergy. ACS Catalysis, 5, 4167–4174. https://doi.org/10.1021/acscatal.5b00728

    Article  Google Scholar 

  28. Ganley, J. C., Thomas, F. S., Seebauer, E. G., & Masel, R. I. (2004). A priori catalytic activity correlations: The difficult case of hydrogen production from ammonia. Catal Letters, 96, 117–122. https://doi.org/10.1023/B:CATL.0000030108.50691.d4

    Article  Google Scholar 

  29. Yu, Y., Gan, Y., Huang, C., et al. (2020). Ni/La2O3 and Ni/MgO–La2O3 catalysts for the decomposition of NH3 into hydrogen. International Journal of Hydrogen Energy, 45, 16528–16539. https://doi.org/10.1016/j.ijhydene.2020.04.127

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Regional Government of Castilla-La Mancha and the European Union [FEDER funds SBPLY/21/180501/000165]. M. Pinzón thanks the University of Castilla-La Mancha for the predoctoral contract within the framework of the Plan Propio I + D + i (grant number 2022-PRED-20658).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Romero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pinzón, M., Sánchez-Sánchez, A., Sánchez, P., de la Osa, A.R., Romero, A. (2023). Perovskites as Catalyst Precursor for Hydrogen Production from Ammonia Decomposition. In: Nie, W., Iniewski, K.(. (eds) Metal-Halide Perovskite Semiconductors. Springer, Cham. https://doi.org/10.1007/978-3-031-26892-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26892-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26891-5

  • Online ISBN: 978-3-031-26892-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics