Skip to main content

Introduction and History of Insect Biotechnology

  • Chapter
  • First Online:
Introduction to Insect Biotechnology

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 213 Accesses

Abstract

Insects are the most successful organisms on earth in terms of their diversity and adaptability. Insect biotechnology or yellow biotechnology using these insect resources is an emerging area for biotechnology along with several claims. Insect resources have long been used to make food or functional food, feed different animals and different nutritive shakes, cosmetics as well as medicine and industrial ingredients. The insect cell lines have been used to express recombinant proteins that were thought to be very difficult to functional expression for public purposes. Only interdisciplinary research will guarantee the success story for insect biotechnology in the current situation in near future. Insects as a bioresource for new products with applications in medicine, agriculture and industry in near future. This chapter will definitely bring some basic knowledge of insect biotechnology related to their applied aspects from agriculture to modern health problems and the possible role of insect biotechnology in the development of future biotechnology using this bioresource.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramos-Elorduy J. Anthropo-entomophagy: cultures, evolution and sustainability. Entomol Res. 2009;39(5):271–88.

    Article  Google Scholar 

  2. Jongema Y. Worldwide list of recorded edible insects. Wageningen: Department of Entomology, Wageningen University & Research; 2017.

    Google Scholar 

  3. Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc B. 2019;374(1783):20190070.

    Article  CAS  Google Scholar 

  4. Vivallo F. Phoretic copulation in Aculeata (Insecta: Hymenoptera): a review. Zool J Linn Soc. 2021;191(3):627–36.

    Article  Google Scholar 

  5. Tooker JF, O'Neal ME, Rodriguez-Saona C. Balancing disturbance and conservation in agroecosystems to improve biological control. Annu Rev Entomol. 2020;65:81–100.

    Article  CAS  PubMed  Google Scholar 

  6. Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA interference in insects: protecting beneficials and controlling pests. Front Physiol. 2019;9:1912.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bellen HJ, Tong C, Tsuda H. 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci. 2010;11(7):514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lemeunier F, Aulard S. Drosophila chromosome study techniques. In: Techniques in animal cytogenetics. Berlin: Springer; 2000. p. 137–49.

    Chapter  Google Scholar 

  9. Lozano-Fernandez J, Carton R, Tanner AR, Puttick MN, Blaxter M, Vinther J, Olesen J, Giribet G, Edgecombe GD, Pisani D. A molecular palaeobiological exploration of arthropod terrestrialization. Philos Trans R Soc B Biol Sci. 2016;371(1699):20150133.

    Article  Google Scholar 

  10. Grau T, Vilcinskas A, Joop G. Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Z Naturforsch C. 2017;72(9–10):337–49.

    Article  CAS  PubMed  Google Scholar 

  11. Muller A, Wolf D, Gutzeit HO. The black soldier fly, Hermetia illucens—a promising source for sustainable production of proteins, lipids and bioactive substances. Z Naturforsch C. 2017;72(9–10):351–63.

    Article  PubMed  Google Scholar 

  12. Kumar D, Gong C, editors. Trends in insect molecular biology and biotechnology. Cham: Springer; 2018.

    Google Scholar 

  13. Xue Y, Wang F, Torculas M, Lofland S, Hu X. Formic acid regenerated mori, tussah, eri, thai, and muga silk materials: mechanism of self-assembly. ACS Biomater Sci Eng. 2019;5(12):6361–73.

    Article  CAS  PubMed  Google Scholar 

  14. Carpena M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients. 2020;12(11):3360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: a review. Trends Food Sci Technol. 2021;115:297–306.

    Article  CAS  Google Scholar 

  16. Saralaya S, Jayanth BS, Thomas NS, Sunil SM. Bee wax and honey—a primer for OMFS. Oral Maxillofac Surg. 2021;25(1):1–6.

    Article  PubMed  Google Scholar 

  17. Chandrakanth N, Makwana P, Satish L, Rabha M, Sivaprasad V. Molecular approaches for detection of pebrine disease in sericulture. In: Gurtler V, Subrahmanyam G, editors. Methods in microbiology, vol. 49. New York: Academic Press; 2021. p. 47–77.

    Google Scholar 

  18. Pereira NC, Munhoz RE, Bignotto TS, Bespalhuk R, Garay LB, Saez CR, Fassina VA, Nembri A, Fernandez MA. Biological and molecular characterization of silkworm strains from the Brazilian germplasm bank of Bombyx mori. Genet Mol Res. 2013;12(2):2138–47.

    Article  CAS  PubMed  Google Scholar 

  19. Agliano F, Rathinam VA, Medvedev AE, Vanaja SK, Vella AT. Long noncoding RNAs in host–pathogen interactions. Trends Immunol. 2019;40(6):492–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li MZ, Xiao HM, Kang H, Fei L. Progress and prospects of noncoding RNAs in insects. J Integr Agric. 2019;18(4):729–47.

    Article  CAS  Google Scholar 

  21. Li JJ, Shi Y, Wu JN, Li H, Smagghe G, Liu TX. CRISPR/Cas9 in lepidopteran insects: Progress, application and prospects. J Insect Physiol. 2021;135:104325.

    Article  CAS  PubMed  Google Scholar 

  22. Jactel H, Moreira X, Castagneyrol B. Tree diversity and forest resistance to insect pests: patterns, mechanisms, and prospects. Annu Rev Entomol. 2021;66:277–96.

    Article  CAS  PubMed  Google Scholar 

  23. Kranthi KR, Stone GD. Long-term impacts of Bt cotton in India. Nat Plants. 2020;6(3):188–96.

    Article  CAS  PubMed  Google Scholar 

  24. Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of resistance to insecticidal proteins from Bacillus thuringiensis. Annu Rev Entomol. 2021;66:121–40.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Hallerman EM, Wu K, Peng Y. Insect-resistant genetically engineered crops in China: development, application, and prospects for use. Annu Rev Entomol. 2020;7(65):273–92.

    Article  Google Scholar 

  26. Mall T, Gupta M, Dhadialla TS, Rodrigo S. Overview of biotechnology-derived herbicide tolerance and insect resistance traits in plant agriculture. In: Kumar S, Barone P, Smith M, editors. Transgenic plants: methods and protocols. New York: Humana Press; 2019. p. 313–42.

    Chapter  Google Scholar 

  27. Mandal A, Sarkar B, Owens G, Thakur JK, Manna MC, Niazi NK, Jayaraman S, Patra AK. Impact of genetically modified crops on rhizosphere microorganisms and processes: a review focusing on Bt cotton. Appl Soil Ecol. 2020;1(148):103492.

    Article  Google Scholar 

  28. Oghenesuvwe EE, Paul C. Edible insects bio-actives as anti-oxidants: current status and perspectives. J Complement Med. 2019;10(2):89–102.

    CAS  Google Scholar 

  29. Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018 Mar;37(1):107–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crysnanto D, Obbard DJ. Widespread gene duplication and adaptive evolution in the RNA interference pathways of the Drosophila obscura group. BMC Evol Biol. 2019;19(1):1–2.

    Article  Google Scholar 

  31. Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. Physiol Mol Biol Plants. 2017;23(3):487–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xavier B. Beyond drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol. 2010;55:111–28.

    Article  Google Scholar 

  33. Doi H, Gałęcki R, Mulia RN. The merits of entomophagy in the post COVID-19 world. Trends Food Sci Technol. 2021;110:849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bulet P, Cociancich S, Reuland M, Sauber F, Bischoff R, Hegy G, Van Dorsselaer A, Hetru C, Hoffmann JA. A novel insect defensin mediates the inducible antibacterial activity in larvae of the dragonfly Aeschna cyanea (Paleoptera, Odonata). Eur J Biochem. 1992;209(3):977–84.

    Article  CAS  PubMed  Google Scholar 

  35. Bulet P, Dimarcq JL, Hetru C, Lagueux M, Charlet M, Hegy G, Van Dorsselaer A, Hoffmann JA. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem. 1993;268:14893–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hedengren M, Borge K, Hultmark D. Expression and evolution of the Drosophila Attacin/Diptericin gene family. Biochem Biophys Res Commun. 2000;279:574–81.

    Article  CAS  PubMed  Google Scholar 

  37. Imler JL, Bulet P. Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy. 2005;86:1–21.

    CAS  PubMed  Google Scholar 

  38. Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins (Basel). 2018;10(11):461.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Singh, S., Kundapur, R.R., Gupta, D., Shukla, S. (2023). Introduction and History of Insect Biotechnology. In: Kumar, D., Shukla, S. (eds) Introduction to Insect Biotechnology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-031-26776-5_1

Download citation

Publish with us

Policies and ethics