Skip to main content

Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 122

Abstract

Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an “herbal tea.” Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO Organización Mundial de la Salud (2013) Estrategia de la oms sobre medicina tradicional 2014–2023. https://apps.who.int/iris/handle/10665/95008. Accessed 17 Oct 2022

  2. Ullah H, De Filippis A, Baldi A, Dacrema M, Esposito C, Garzarella EU, Santarcangelo C, Tantipongpiradet A, Daglia M (2021) Beneficial effects of plant extracts and bioactive food components in childhood supplementation. Nutrients 13:3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Efferth T, Greten H (2012) Quality control for medicinal plants. Med Aromat Plants 1:7

    Google Scholar 

  4. Lordan R, Rando HM, Greene CS (2021) Dietary supplements and nutraceuticals under investigation for COVID-19 prevention and treatment. mSystems 6:e0122

    Google Scholar 

  5. Wang Y-K, Li WQ, Xia S, Guo L, Miao Y, Zhang B-K (2021) Metabolic activation of the toxic natural products from herbal and dietary supplements leading to toxicities. Front Pharmacol 12:758468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vovk I, Glavnik V (2015) Analysis of dietary supplements. In: Poole CF (ed) Instrumental thin-layer chromatography. Elsevier, Boston, MA, p 589

    Chapter  Google Scholar 

  7. van Breemen RB, Fong HHS, Farnsworth NR (2008) Ensuring the safety of botanical dietary supplements. Am J Clin Nutr 87:509s

    Article  PubMed  Google Scholar 

  8. Kunle OF, Egharevba HO, Ahmadu PO (2012) Standardization of herbal medicines—a review. Int J Biodivers Conserv 4:101

    Article  Google Scholar 

  9. Bandaranayake WM (2006) Quality control, screening, toxicity, and regulation of herbal drugs. In: Ahmad I, Aqil F, Owais M (eds) Modern phytomedicine: turning medicinal plants into drugs. Wiley, Weinheim, p 25

    Chapter  Google Scholar 

  10. Sahoo N, Manchikanti P, Dey S (2010) Herbal drugs: standards and regulation. Fitoterapia 81:462

    Article  PubMed  Google Scholar 

  11. Smillie TJ, Khan IA (2010) A comprehensive approach to identifying and authenticating botanical products. Clin Pharmacol Ther 87:175

    Article  CAS  PubMed  Google Scholar 

  12. Smith T, Majid F, Eckl V, Reynolds CM (2021) Herbal supplement sales in US increase by record-breaking 17.3% in 2020. HerbalGram 131:52

    Google Scholar 

  13. U.S. Food & Drug Administration (2021) FDA regulation of cannabis and cannabis-derived products, including cannabidiol (CBD). https://www.fda.gov/news-events/public-health-focus/fda-regulation-cannabis-and-cannabis-derived-products-including-cannabidiol-cbd. Accessed 13 Sept 2022

  14. Cogan PS (2019) On healthcare by popular appeal: critical assessment of benefit and risk in cannabidiol based dietary supplements. Expert Rev Clin Pharmacol 12:501

    Article  CAS  PubMed  Google Scholar 

  15. Koturbash I, MacKay D (2020) Cannabidiol and other cannabinoids: from toxicology and pharmacology to the development of a regulatory pathway. J Diet Suppl 17:487

    Article  CAS  PubMed  Google Scholar 

  16. Wink M, Botschen F, Gosmann C, Schäfer H, Waterman PG (2010) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. In: Wink M (ed) Annual plant reviews, biochemistry of plant secondary metabolism, vol 40. Wiley, Chichester, UK, p 364

    Chapter  Google Scholar 

  17. Zidorn C (2019) Plant chemophenetics—a new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry 163:147

    Article  CAS  PubMed  Google Scholar 

  18. Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB (2019) Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 36:1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skiba MB, Luis PB, Alfafara C, Billheimer D, Schneider C, Funk JL (2018) Curcuminoid content and safety-related markers of quality of turmeric dietary supplements sold in an urban retail marketplace in the United States. Mol Nutr Food Res 62:1800143

    Article  Google Scholar 

  20. Cerrato A, Citti C, Cannazza G, Capriotti AL, Cavaliere C, Grassi G, Marini F, Montone CM, Paris R, Piovesana S, Laganà A (2021) Phytocannabinomics: untargeted metabolomics as a tool for Cannabis chemovar differentiation. Talanta 230:122313

    Article  CAS  PubMed  Google Scholar 

  21. Guo Y, Yin T, Wang X, Zhang F, Pan G, Lv H, Owoicho Orgah J, Zhu Y, Wu H (2017) Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: a review. J Ethnopharmacol 209:264

    Article  CAS  PubMed  Google Scholar 

  22. Gafner S (2016) Adulteration of Actaea racemosa. In: Botanical adulterants bulletin. Available via American Botanical Council. http://www.herbalgram.org/resources/botanical-adulterants-prevention-program/adulterants-bulleteins/black-cohosh-bulletin-june-2016/. Accessed 17 Oct 2022

  23. Ali Z, Khan SI, Fronczek FR, Khan IA (2007) 9,10-seco-9,19-Cyclolanostane arabinosides from the roots of Actaea podocarpa. Phytochemistry 68:373

    Article  CAS  PubMed  Google Scholar 

  24. Qiu F, McAlpine JB, Krause EC, Chen S-N, Pauli GF (2014) Pharmacognosy of black cohosh: the phytochemical and biological profile of a major botanical dietary supplement. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 99. Springer, Cham, Switzerland, p 1

    Chapter  Google Scholar 

  25. Hao DC, Gu XJ, Xiao PG, Liang ZG, Xu LJ, Yong P (2013) Recent advance in chemical and biological studies on Cimicifugeae pharmaceutical resources. Chin Herbal Med 5:81

    CAS  Google Scholar 

  26. Sun LR, Qing C, Zhang YL, Jia SY, Li ZR, Pei SJ, Qiu MH, Gross ML, Qiu SX (2007) Cimicifoetisides A and B, two cytotoxic cycloartane triterpenoid glycosides from the rhizomes of Cimicifuga foetida, inhibit proliferation of cancer cells. Beilstein J Org Chem 3:3

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geng P, Chen P, Sun J, McCoy JH, Harnly JM (2019) Authentication of black cohosh (Actaea racemosa) dietary supplements based on chemometric evaluation of hydroxycinnamic acid esters and hydroxycinnamic acid amides. Anal Bioanal Chem 411:7147

    Article  CAS  PubMed  Google Scholar 

  28. Salari S, Amiri MS, Ramezani M, Moghadam AT, Elyasi S, Sahebkar A, Emami SA (2021) Ethnobotany, phytochemistry, traditional and modern uses of Actaea racemosa L. (black cohosh): a review. In: Barreto GE, Sahebkar A (eds) Pharmacological properties of plant-derived natural products and implications for human health. Springer, Cham, Switzerland, p 403

    Chapter  Google Scholar 

  29. Jöhrer K, Stuppner H, Greil R, Çiçek SS (2020) Structure-guided identification of black cohosh (Actaea racemosa) triterpenoids with in vitro activity against multiple myeloma. Molecules 25:766

    Article  PubMed  PubMed Central  Google Scholar 

  30. Çiçek SS, Girreser U, Zidorn C (2018) Quantification of the total amount of black cohosh cycloartanoids by integration of one specific 1H NMR signal. J Pharm Biomed Anal 155:109

    Article  PubMed  Google Scholar 

  31. Alam A, Al Arif Jahan A, Bari MS, Khandokar L, Mahmud MH, Junaid M, Chowdhury MS, Khan MF, Seidel V, Haque MA (2022) Allium vegetables: traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit Rev Food Sci Nutr 16:1

    Article  Google Scholar 

  32. Kuete V (2017) Allium sativum. In: Kuete V (ed) Medicinal spices and vegetables from Africa: therapeutic potential against metabolic, inflammatory, infectious and systemic diseases. Academic Press, London, p 363

    Google Scholar 

  33. Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, Mavumengwana V, Li HB (2019) Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 8:246

    Google Scholar 

  34. El-Saber Batiha G, Beshbishy AM, Wasef LG, Elewa YHA, Al-Sagan AA, Abd El-Hack ME, Taha AE, Abd-Elhakim YM, Devkota HP (2020) Chemical constituents and pharmacological activities of garlic (Allium sativum L.): a review. Nutrients 12:872

    Google Scholar 

  35. Putnik P, Gabrić D, Roohinejad S, Barba FJ, Granato D, Mallikarjunan K, Lorenzo JM, Kovačević DB (2019) An overview of organosulfur compounds from Allium spp.: from processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chem 276:680

    Google Scholar 

  36. Kothari D, Lee W-D, Niu K-M, Kim S-K (2019) The genus Allium as poultry feed additive: a review. Animals 9:1032

    Article  PubMed  PubMed Central  Google Scholar 

  37. Amagase H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136:716S

    Article  CAS  PubMed  Google Scholar 

  38. Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O (2017) Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 22:1359

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lanzotti V, Scala F, Bonanomi G (2014) Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem Rev 13:769

    Article  CAS  Google Scholar 

  40. Reynolds T (ed) (2004) Aloes: the genus Aloe. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  41. Kumar S, Kumar R (2019) Role of acemannan O-acetyl group in murine radioprotection. Carbohydr Polym 207:460

    Article  CAS  PubMed  Google Scholar 

  42. Sierra-García GD, Castro-Ríos R, González-Horta A, Lara-Arias J, Chávez-Montes A (2014) Acemannan, an extracted polysaccharide from Aloe vera: a literature review. Nat Prod Commun 9:1217

    PubMed  Google Scholar 

  43. Ahluwalia B, Magnusson MK, Isaksson S, Larsson F, Öhman L (2016) Effects of Aloe barbadensis Mill. extract (AVH200®) on human blood T cell activity in vitro. J Ethnopharmacol 179:301

    Google Scholar 

  44. Christaki E, Florou-Paneri P (2010) Aloe vera: a plant for many uses. J Food Agric Environ 8:245

    Google Scholar 

  45. Puia A, Puia C, MoiȘ E, Graur F, Fetti A, Florea M (2021) The phytochemical constituents and therapeutic uses of genus Aloe: a review. Not Bot Horti Agrobot Cluj-Napoca 49:12332

    Article  CAS  Google Scholar 

  46. Liu C, Cui Y, Pi F, Cheng Y, Guo Y, Qian H (2019) Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from Aloe vera: a review. Molecules 24:1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reynolds T, Dweck AC (1999) Aloe vera leaf gel: a review update. J Ethnopharmacol 68:3

    Article  CAS  PubMed  Google Scholar 

  48. Cock IE (2015) The genus Aloe: phytochemistry and therapeutic uses including treatments for gastrointestinal conditions and chronic inflammation. In: Rainsford KD, Powanda MC, Whitehouse MW (eds) Novel natural products: therapeutic effects in pain, arthritis and gastro-intestinal diseases. Springer, Heidelberg, p 179

    Chapter  Google Scholar 

  49. Sibhat G, Kahsay G, Van Schepdael A, Adams E (2021) Fast and easily applicable LC-UV method for analysis of bioactive anthrones from aloe leaf latex. J Pharm Biomed Anal 195:113834

    Article  CAS  PubMed  Google Scholar 

  50. Cardarelli M, Rouphael Y, Pellizoni M, Colla G, Lucini L (2017) Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind Crops Prod 108:44

    Article  CAS  Google Scholar 

  51. Yang F, Cao Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W, Xie Y (2021) Transformation and degradation of barbaloin in aqueous solutions and aloe powder under different processing conditions. Food Biosci 43:101279

    Article  CAS  Google Scholar 

  52. Salehi B, Albayrak S, Antolak H, Kręgiel D, Pawlikowska E, Sharifi-Rad M, Uprety Y, Tsouh Fokou PV, Yousef Z, Zakaria ZA, Varoni EM, Sharopov F, Martins N, Iriti M, Sharifi-Rad J (2018) Aloe genus plants: from farm to food applications and phytopharmacotherapy. Int J Mol Sci 19:2843

    Article  PubMed  PubMed Central  Google Scholar 

  53. Viljoen AM, Van Wyk B (2000) The chemotaxonomic significance of the phenyl pyrone aloenin in the genus Aloe. Biochem Syst Ecol 28:1009

    Article  CAS  PubMed  Google Scholar 

  54. Hęś M, Dziedzic K, Górecka D, Jędrusek-Golińska A, Gujska E (2019) Aloe vera (L.) Webb.: natural sources of antioxidants—a review. Plant Foods Hum Nutr 74:255

    Google Scholar 

  55. Nalimu F, Oloro J, Kahwa I, Ogwang PE (2021) Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Future J Pharm Sci 7:145

    Article  Google Scholar 

  56. Dey P, Dutta S, Chowdhury A, Das AP, Chaudhuri TK (2017) Variation in phytochemical composition reveals distinct divergence of Aloe vera (L.) Burm.f. from other Aloe species: rationale behind selective preference of Aloe vera in nutritional and therapeutic use. J Evid Based Complement Altern Med 22:624

    Google Scholar 

  57. Bera TK, Kar SK (2018) Phytochemical constituents of Aloe vera and their multifunctional properties: a comprehensive review. Int J Pharm Sci Res 9:1416

    Google Scholar 

  58. Banik S, Sharangi AB (2019) Phytochemistry, health benefits and toxicological profile of aloe. J Pharmacogn Phytochem 8:4499

    CAS  Google Scholar 

  59. Wang J, Su B, Jiang H, Cui N, Yu Z, Yang Y, Sun Y (2020) Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): a review. Fitoterapia 146:104675

    Article  CAS  PubMed  Google Scholar 

  60. Oketch-Rabah HA, Marles RJ, Brinckmann JA (2018) Cinnamon and Cassia nomenclature confusion: a challenge to the applicability of clinical data. Clin Pharmacol Ther 104:435

    Article  PubMed  Google Scholar 

  61. Sharifi-Rad J, Dey A, Koirala N, Shaheen S, El Omari N, Salehi B, Goloshvili T, Cirone Silva NC, Bouyahya A, Vitalini S, Varoni EM, Martorell M, Abdolshahi A, Docea AO, Iriti M, Calina D, Les F, López V, Caruntu C (2021) Cinnamomum species: bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol 12:600139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Błaszczyk N, Rosiak A, Kałużna-Czaplińska J (2021) The potential role of cinnamon in human health. Forests 12:648

    Article  Google Scholar 

  63. Wang Y-H, Avula B, Nanayakkara NPD, Zhao J, Khan IA (2013) Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J Agric Food Chem 61:4470

    Article  CAS  PubMed  Google Scholar 

  64. Monteiro Nogueria I, dos Santos MO, Costa-Junior LM, da Silva LA, de Aguiar Andrade EH, Soares Maia JG, Mouchrek Filho VE (2017) Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 238:54

    Article  Google Scholar 

  65. Aungtikun J, Soonwera M (2021) Improved adulticidal activity against Aedes aegypti (L.) and Aedes albopictus (Skuse) from synergy between Cinnamomum spp. essential oils. Sci Rep 11:4685

    Google Scholar 

  66. Wang Y, Harrington PDB, Chen P (2020) Metabolomic profiling and comparison of major cinnamon species using UHPLC–HRMS. Anal Bioanal Chem 412:7669

    Article  CAS  PubMed  Google Scholar 

  67. Barreca D, Mandalari G, Calderaro A, Smeriglio A, Trombetta D, Felice MR, Gattuso G (2020) Citrus flavones: an update on sources, biological functions, and health promoting properties. Plants 9:288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yi L, Ma S, Ren D (2017) Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities. Phytochem Rev 16:479

    Article  CAS  Google Scholar 

  69. Dugrand-Judek A, Olry A, Hehn A, Costantino G, Ollitrault P, Froelicher Y, Bourgaud F (2015) The distribution of coumarins and furanocoumarins in Citrus species closely matches Citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One 10:e0142757

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shi Y-S, Zhang Y, Li H-T, Wu C-H, El-Seedi HR, Ye W-K, Wang Z-W, Li C-B, Zhang X-F, Kai G-Y (2020) Limonoids from Citrus: chemistry, anti-tumor potential, and other bioactivities. J Funct Foods 75:104213

    Article  CAS  Google Scholar 

  71. Liu N, Li X, Zhao P, Zhang X, Qiao O, Huang L, Guo L, Gao W (2021) A review of chemical constituents and health-promoting effects of citrus peels. Food Chem 365:130585

    Article  CAS  PubMed  Google Scholar 

  72. Stohs SJ, Shara M, Ray SD (2020) p-Synephrine, ephedrine, p-octopamine and m-synephrine: comparative mechanistic, physiological and pharmacological properties. Phytother Res 34:1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Končić MZ (2017) Role of selected medicinal plants in sports nutrition and energy homeostasis. In: Bagchi D (ed) Sustained energy for enhanced human functions and activity. Academic Press, London, p 119

    Chapter  Google Scholar 

  74. Maksoud S, Abdel-Massih RM, Rajha HN, Louka N, Chemat F, Barba FJ, Debs E (2021) Citrus aurantium L. active constituents, biological effects and extraction methods. An updated review. Molecules 26:5832

    Google Scholar 

  75. Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY (2019) Bitter orange (Citrus aurantium Linné) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients 11:1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sato R (2013) Nomilin as an anti-obesity and anti-hyperglycemic agent. Vitam Horm 91:425

    Article  CAS  PubMed  Google Scholar 

  77. Suntar I, Khan H, Patel S, Celano R, Rastrelli L (2018) An overview on Citrus aurantium L.: its functions as food ingredient and therapeutic agent. Oxid Med Cell Longev 2018:7864269

    Google Scholar 

  78. Edwards JE, Brown PN, Talent N, Dickinson TA, Shipley PR (2012) A review of the chemistry of the genus Crataegus. Phytochemistry 79:5

    Article  CAS  PubMed  Google Scholar 

  79. Djordjević S, Nikolić NĆ (2021) Hawthorn (Crataegus spp.) from botanical source to phytopreparations. Lekovite Sirovine 41:63

    Google Scholar 

  80. Orhan IE (2018) Phytochemical and pharmacological activity profile of Crataegus oxycantha L. (Hawthorn)—a cardiotonic herb. Curr Med Chem 25:4854

    Google Scholar 

  81. Zorniak M, Porc MP, Krzeminski TF (2019) Hawthorn revisited: time- and dose-dependent cardioprotective action of WS-1442 special extract in the reperfusion-induced arrhythmia model in rats in vivo. J Physiol Pharmacol 70:307

    CAS  Google Scholar 

  82. Fong HHS, Bauman JL (2002) Hawthorn. J Cardiovasc Nurs 16:1

    Article  PubMed  Google Scholar 

  83. Wang J, Xiong X, Feng B (2013) Effect of Crataegus usage in cardiovascular disease prevention: an evidence-based approach. Evid Based Complement Altern Med 2013:149363

    Article  Google Scholar 

  84. Nahar L, Sarker S (2007) Phytochemistry of the genus Curcuma. In: Ravindran P, Babu KN, Sivaraman K (eds) Turmeric: the genus Curcuma. CRC Press, Boca Raton, FL, p 71

    Google Scholar 

  85. Booker A, Frommenwiler D, Johnston D, Umealajekwu C, Reich E, Heinrich M (2014) Chemical variability along the value chains of turmeric (Curcuma longa): a comparison of nuclear magnetic resonance spectroscopy and high performance thin layer chromatography. J Ethnopharmacol 152:292

    Article  CAS  PubMed  Google Scholar 

  86. Bejar E (2018) Turmeric (Curcuma longa) root and rhizome, and root and rhizome extracts. In: Botanical adulterants bulletin. Available via American Botanical Council. http://www.herbalgram.org/resources/botanical-adulterants-prevention-program/adulterants-bulletin-may-2018/. Accessed 17 Oct 2022

  87. Tayyem RF, Heath DD, Al-Delaimy WK, Rock CL (2006) Curcumin content of turmeric and curry powders. Nutr Cancer 55:126

    Article  CAS  PubMed  Google Scholar 

  88. Kulyal P, Acharya S, Ankari AB, Kokkiripati PK, Tetali SD, Raghavendra AS (2021) Variable secondary metabolite profiles across cultivars of Curcuma longa L. and C. aromatica Salisb. Front Pharmacol 12:659546

    Google Scholar 

  89. Syu WJ, Shen CC, Don MJ, Ou JC, Lee GH, Sun CM (1998) Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J Nat Prod 61:1531

    Article  CAS  PubMed  Google Scholar 

  90. Avula B, Wang YH, Khan IA (2012) Quantitative determination of curcuminoids from the roots of Curcuma longa, Curcuma species and dietary supplements using an UPLC-UV-MS method. J Chromatogr Sep Tech 3(1):1000120

    Article  Google Scholar 

  91. Zhang J, Jinnai S, Ikeda R, Wada M, Hayashida S, Nakashima K (2009) A simple HPLC-fluorescence method for quantitation of curcuminoids and its application to turmeric products. Anal Sci 25:385

    Article  PubMed  Google Scholar 

  92. Dosoky NS, Satyal P, Setzer WN (2019) Variations in the volatile compositions of Curcuma species. Foods 8:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Braga ME, Leal PF, Carvalho JE, Meireles MA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604

    Google Scholar 

  94. Jantan I, Saputri FC, Qaisar MN, Buang F (2012) Correlation between chemical composition of Curcuma domestica and Curcuma xanthorrhiza and their antioxidant effect on human low-density lipoprotein oxidation. Evid Based Complement Altern Med 2012:438356

    Article  Google Scholar 

  95. Ib J, Ahmad AS, Ali NAM, Ahmad AR, Ibrahim H (1999) Chemical composition of the rhizome oils of four Curcuma species from Malaysia. J Essent Oil Res 11:719

    Article  Google Scholar 

  96. Septama AW, Tasfiyati AN, Kristiana R, Jaisi A (2022) Chemical profiles of essential oil from Javanese turmeric (Curcuma xanthorrhiza Roxb.), evaluation of its antibacterial and antibiofilm activities against selected clinical isolates. S Afr J Bot 146:728

    Google Scholar 

  97. Amalraj A, Pius A, Gopi S, Gopi S (2016) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhang HA, Kitts DD (2021) Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol Cell Biochem 476:3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kindscher K (2016) The uses of Echinacea angustifolia and other Echinacea species by Native Americans. In: Kindscher K (ed) Echinacea: herbal medicine with a wild history. Springer, Cham, Switzerland, p 9

    Chapter  Google Scholar 

  100. Cao C, Kindscher K (2016) The medicinal chemistry of Echinacea species. In: Kindscher K (ed) Echinacea: herbal medicine with a wild history. Springer, Cham, Swizerland, p 127

    Chapter  Google Scholar 

  101. Chang BY, Lee SK, Kim DE, Bae JH, Ho TT, Park S-Y, Lee MK, Kim SY (2020) Effect of echinalkamide identified from Echinacea purpurea (L.) Moench on the inhibition of osteoclastogenesis and bone resorption. Sci Rep 10:10914

    Google Scholar 

  102. Bruni R, Brighenti V, Caesar LK, Bertelli D, Cech NB, Pellati F (2018) Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J Pharm Biomed Anal 160:443

    Article  CAS  PubMed  Google Scholar 

  103. Handy SM, Pawar RS, Ottesen AR, Ramachandran P, Sagi S, Zhang N, Hsu E, Erickson DL (2021) HPLC-UV, metabarcoding and genome skims of botanical dietary supplements: a case study in Echinacea. Planta Med 87:314

    Article  CAS  PubMed  Google Scholar 

  104. Ren L, Guo M-Y, Pang X-H (2018) Identification and classification of medicinal plants in Epimedium. Chin Herb Med 10:249

    Article  Google Scholar 

  105. Ma H, He X, Yang Y, Li M, Hao D, Jia Z (2011) The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134:519

    Article  CAS  PubMed  Google Scholar 

  106. Schulz M, Campelo Borges GdS, Valdemiro Gonzaga L, Oliveira Costa AC, Fett R (2016) Juçara fruit (Euterpe edulis Mart.): sustainable exploitation of a source of bioactive compounds. Food Res Int 89:14

    Google Scholar 

  107. Schulz M, Tischer Seraglio S, Valdemiro Gonzaga L, Oliveira Costa AC, Fett R (2021) Phenolic compounds in Euterpe fruits: composition, digestibility, and stability—a review. Food Rev Int. https://doi.org/10.1080/87559129.2021.1909060

    Article  Google Scholar 

  108. de Souza C, Pereira D, dos Santos GF, Valeriano Tonon R, Beres C, Maria Corrêa Cabral L (2022) Towards chemical characterization and possible applications of juçara fruit: an approach to remove Euterpe edulis Martius from the extinction list. J Food Sci Technol. https://doi.org/10.1007/s13197-021-05342-8

    Article  PubMed  Google Scholar 

  109. de Lima Yamaguchi KK, Ravazi Pereira LF, Lamarão CV, Silva Lima E, da Veiga-Junior VF (2015) Amazon açaí: chemistry and biological activities: a review. Food Chem 179:137

    Article  Google Scholar 

  110. de Almeida Magalhães TSS, de Oliveira Macedo PC, Converti A, Neves de Lima ÁA (2020) The use of Euterpe oleracea Mart. as a new perspective for disease treatment and prevention. Biomolecules 10:813

    Google Scholar 

  111. Spontoni do Espirito Santo BL, Figueiredo Santana L, Kato Junior WH, de Oliveira de Araújo F, Bogo D, de Cássia Freitas K, de Cássia Avellaneda Guimarães R, Aiko Hiane P, Pott A, de Oliveira Filiú WF (2020) Medicinal potential of Garcinia species and their compounds. Molecules 25:4513

    Google Scholar 

  112. The World Flora Online (2022) Garcinia L. http://www.worldfloraonline.org/taxon/wfo-4000015318. Accessed 14 Sept 2022

  113. Seethapathy GS, Tadesse M, Urumarudappa SKJ, Gunaga SV, Vasudeva R, Malterud KE, Shaanker RU, de Boer HJ, Ravikanth G, Wangensteen H (2018) Authentication of Garcinia fruits and food supplements using DNA barcoding and NMR spectroscopy. Sci Rep 8:10561

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lim TK (2012) Introduction. In: Lim TK (ed) Edible medicinal and non-medicinal plants, vol 2. Springer, Dordrecht, The Nederlands, p 1

    Google Scholar 

  115. Pandey R, Chandra P, Kumar B, Srivastva M, Aravind AA, Shameer P, Rameshkumar K (2015) Simultaneous determination of multi-class bioactive constituents for quality assessment of Garcinia species using UHPLC–QqQLIT–MS/MS. Ind Crops Prod 77:861

    Article  CAS  Google Scholar 

  116. Sripradha R, Sridhar MG, Maithilikarpagaselvi N (2016) Antihyperlipidemic and antioxidant activities of the ethanolic extract of Garcinia cambogia on high fat diet-fed rats. J Complement Integr Med 13:9

    Article  CAS  PubMed  Google Scholar 

  117. Semwal RB, Semwal DK, Vermaak I, Viljoen A (2015) A comprehensive scientific overview of Garcinia cambogia. Fitoterapia 102:134

    Article  CAS  PubMed  Google Scholar 

  118. Shaito A, Thi Bich Thuan D, Thi Phu H, Hie Nguyen T, Hasan H, Halabi S, Abdelhady SK, Nasrallah GH, Eid A, Pintus G (2020) Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front Pharmacol 11:422

    Google Scholar 

  119. Liu L, Wang Y, Zhang J, Wang S (2020) Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals. J Pharm Biomed Anal 193:113704

    Article  PubMed  Google Scholar 

  120. Ma G-L, Xiong J, Yang G-X, Pan L-L, Hu C-L, Wang W, Fan H, Zhao Q-H, Zhang H-Y, Hu J-F (2016) Biginkgosides A-I, unexpected minor dimeric flavonol diglycosidic truxinate and truxillate esters from Ginkgo biloba leaves and their antineuroinflammatory and neuroprotective activities. J Nat Prod 79:1354

    Article  CAS  PubMed  Google Scholar 

  121. Ude C, Schubert-Zsilavecz M, Wurglics M (2013) Ginkgo biloba extracts: a review of the pharmacokinetics of the active ingredients. Clin Pharmacokinet 52:727

    Article  CAS  PubMed  Google Scholar 

  122. Tang Y, Lou F, Wang J, Li Y, Zhuang S (2001) Coumaroyl flavonol glycosides from the leaves of Ginkgo biloba. Phytochemistry 58:1251

    Article  CAS  PubMed  Google Scholar 

  123. Gafner S (2018) Adulteration of Ginkgo biloba leaf extract. In: Botanical adulterants bulletin. Available via American Botanical Council. https://www.herbalgram.org/resources/botanical-adulterants-prevention-program/adulterants-bulletins/ginkgo-bulletin-january-2018/. Accessed 25 Oct 2022

  124. Collins BJ, Kerns SP, Aillon K, Mueller G, Rider CV, DeRose EF, London RE, Harnly JM, Waidyanatha S (2020) Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Anal Bioanal Chem 412:6789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Barnes J, Anderson LA, Phillipson JD (2001) St John's wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical perspectives. J Pharm Pharmacol 53:583

    Google Scholar 

  126. Xiao C-Y, Mu Q, Gibbons S (2020) The phytochemistry and pharmacology of Hypericum. Progr Chem Org Nat Prod 112:85

    CAS  Google Scholar 

  127. Orhan N (2021) St. John’s wort (Hypericum perforatum) laboratory guidance document. In: Laboratory guidance documents. Available via American Botanical Council. https://www.herbalgram.org/resources/botanical-adulterants-prevention-program/laboratory-guidance-documents/st-johns-wort-laboratory-guidance-document-december-2021/. Accessed 25 Oct 2022

  128. Silva AR, Taofiq O, Ferreira IC, Barros L (2021) Hypericum genus cosmeceutical application—a decade comprehensive review on its multifunctional biological properties. Ind Crops Prod 159:113053

    Article  CAS  Google Scholar 

  129. Raclariu AC, Paltinean R, Vlase L, Labarre A, Manzanilla V, Ichim MC, Crisan G, Brysting AK, de Boer H (2017) Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS. Sci Rep 7:1291

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhao J, Liu W, Wang J-C (2015) Recent advances regarding constituents and bioactivities of plants from the genus Hypericum. Chem Biodivers 12:309

    Article  CAS  PubMed  Google Scholar 

  131. Hu L-H, Sim K-Y (1998) Complex caged polyisoprenylated benzophenone derivatives, sampsoniones A and B, from Hypericum sampsonii. Tetrahedron Lett 39:7999

    Article  CAS  Google Scholar 

  132. Al-Shehbaz IA (2012) A generic and tribal synopsis of the Brassicaceae (Cruciferae). Taxon 61:931

    Article  Google Scholar 

  133. Wu X, Huang H, Childs H, Wu Y, Yu L, Pehrsson PR (2021) Glucosinolates in Brassica vegetables: characterization and factors that influence distribution, content, and intake. Annu Rev Food Sci Technol 12:485

    Article  CAS  PubMed  Google Scholar 

  134. Đulović A, Burčul F, Čulić VČ, Ruščić M, Brzović P, Montaut S, Rollin P, Blažević I (2021) Lepidium graminifolium L.: glucosinolate profile and antiproliferative potential of volatile isolates. Molecules 26:5183

    Google Scholar 

  135. Blažević I, Montaut S, Burčul F, Rollin P (2015) Glucosinolates: novel sources and biological potential. In: Mérillon JM, Ramawat K (eds) Glucosinolates. Springer, Cham, Switzerland, p 3

    Google Scholar 

  136. Pagnotta E, Agerbirk N, Olsen CE, Ugolini L, Cinti S, Lazzeri L (2017) Hydroxyl and methoxyl derivatives of benzylglucosinolate in Lepidium densiflorum with hydrolysis to isothiocyanates and non-isothiocyanate products: substitution governs product type and mass spectral fragmentation. J Agric Food Chem 65:3167

    Article  CAS  PubMed  Google Scholar 

  137. Kwapong AA, Stapleton P, Gibbons S (2018) A new dimeric imidazole alkaloid plasmid conjugation inhibitor from Lepidium sativum. Tetrahedron Lett 59:1952

    Article  CAS  Google Scholar 

  138. Maier UH, Gundlach H, Zenk MH (1998) Seven imidazole alkaloids from Lepidium sativum. Phytochemistry 49:1791

    Article  CAS  PubMed  Google Scholar 

  139. Jin W, Chen X, Dai P, Yu L (2016) Lepidiline C and D: two new imidazole alkaloids from Lepidium meyenii Walpers (Brassicaceae) roots. Phytochem Lett 17:158

    Article  CAS  Google Scholar 

  140. Le HTN, Van Roy E, Dendooven E, Peeters L, Theunis M, Foubert K, Pieters L, Tuenter E (2021) Alkaloids from Lepidium meyenii (Maca), structural revision of macaridine and UPLC-MS/MS feature-based molecular networking. Phytochemistry 190:112863

    Article  CAS  PubMed  Google Scholar 

  141. Zhou M, Zhang R-Q, Chen Y-J, Liao L-M, Sun Y-Q, Ma Z-H, Yang Q-F, Li P, Ye Y-Q, Hu Q-F (2018) Three new pyrrole alkaloids from the roots of Lepidium meyenii. Phytochem Lett 23:137

    Article  Google Scholar 

  142. Huang Y-J, Peng X-R, Qiu M-H (2018) Progress on the chemical constituents derived from glucosinolates in maca (Lepidium meyenii). Nat Prod Bioprospect 8:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang S, Zhu F (2019) Chemical composition and health effects of maca (Lepidium meyenii). Food Chem 288:422

    Article  CAS  PubMed  Google Scholar 

  144. Zhang S-Z, Yang F, Shao J-L, Pu H-M, Ruan Z-Y, Yang W-L, Li H (2020) The metabolic formation profiles of macamides accompanied by the conversion of glucosinolates in maca (Lepidium meyenii) during natural air drying. Int J Food Sci Technol 55:2428

    Article  CAS  Google Scholar 

  145. McCollom MM, Villinski JR, McPhail KL, Craker LE, Gafner S (2005) Analysis of macamides in samples of maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochem Anal 16:463

    Article  CAS  PubMed  Google Scholar 

  146. Meisner HO, Mscisz A, Piatkowska E, Baraniak M, Mielcarek S, Kedzia B, Holderna-Kedzia E, Pisulewski P (2016) Peruvian maca (Lepidium peruvianum): (ii) phytochemical profiles of four prime maca phenotypes grown in two geographically-distant locations. Int J Biomed Sci 12:9

    Google Scholar 

  147. Geng P, Sun J, Chen P, Brand E, Frame J, Meissner H, Stewart J, Gafner S, Clark S, Miller J, Harnly J (2020) Characterization of maca (Lepidium meyenii/Lepidium peruvianum) using a mass spectral fingerprinting, metabolomic analysis, and genetic sequencing approach. Planta Med 86:674

    Article  CAS  PubMed  Google Scholar 

  148. Cullis C (2011) Linum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: oilseeds. Springer, Berlin, Heidelberg, p 177

    Chapter  Google Scholar 

  149. Westcott ND, Muir AD (2003) Chemical studies on the constituents of Linum spp. In: Muir AD, Westcott ND (eds), Flax: the genus Linum. CRC Press, London, p 67

    Google Scholar 

  150. Bernacchia R, Preti R, Vinci G (2014) Chemical composition and health benefits of flaxseed. Austin J Nutr Food Sci 2:1045

    Google Scholar 

  151. Ansari R, Zarshenas MM, Dadbakhsh AH (2019) A review on pharmacological and clinical aspects of Linum usitatissimum L. Curr Drug Discov Technol 16:148

    Article  CAS  PubMed  Google Scholar 

  152. Akter Y, Junaid M, Afrose SS, Nahrin A, Alam SM, Sharmin T, Akter R, Hosen ZSM (2021) A comprehensive review on Linum usitatissimum medicinal plant: its phytochemistry, pharmacology, and ethnomedicinal uses. Mini Rev Med Chem 21:2801

    Article  CAS  PubMed  Google Scholar 

  153. Engels G, Brinckmann J (2017) Lycium (goji berry). HerbalGram 113:8

    Google Scholar 

  154. Qian D, Zhao Y, Yang G, Huang L (2017) Systematic review of chemical constituents in the genus Lycium (Solanaceae). Molecules 22:911

    Article  PubMed  PubMed Central  Google Scholar 

  155. Tian X, Liang T, Liu Y, Ding G, Zhang F, Ma Z (2019) Extraction, structural characterization, and biological functions of Lycium barbarum polysaccharides: a review. Biomolecules 9:389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Cheng J, Zhou Z-W, Sheng H-P, He L-J, Fan X-W, He Z-X, Sun T, Zhang X, Zhao RJ, Gu L, Cao C, Zhou S-F (2015) An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Des Devel Ther 9:33

    CAS  PubMed  Google Scholar 

  157. Kwok SS, Bu Y, Cheuk-Yin Lo A, Chung-Yan Chan T, So KF, Shiu-Ming Lai J, Co Shih K (2019) A systematic review of potential therapeutic use of Lycium barbarum polysaccharides in disease. BioMed Res Int 2019:4615745

    Article  PubMed  PubMed Central  Google Scholar 

  158. Talebi SM, Sheidai M, Arianejad F, Mahdieh M (2022) Biosystematics relationships among Marrubium L. (Lamiaceae) species in Iran. Genet Resour Crop Evol 69:2833

    Google Scholar 

  159. Argyropoulou C, Karioti A, Skaltsa H (2009) Labdane diterpenes from Marrubium thessalum. Phytochemistry 70:635

    Article  CAS  PubMed  Google Scholar 

  160. Popoola OK, Elbagory AM, Ameer F, Hussein AA (2013) Marrubiin. Molecules 18:9049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Aćimović M, Jeremić K, Salaj N, Gavarić N, Kiprovski B, Sikora V, Zeremski T (2020) Marrubium vulgare L.: a phytochemical and pharmacological overview. Molecules 25:2898

    Google Scholar 

  162. Villanueva JR, Esteban JM, Villanueva LR (2017) A reassessment of the Marrubium vulgare L. herb's potential role in diabetes mellitus type 2: first results guide the investigation toward new horizons. Medicines 4:57

    Google Scholar 

  163. Brouillet L (2022) Matricaria. Flora of North America. http://floranorthamerica.org/Matricaria. Accessed 22 Jun 2022

  164. Kolanos R, Stice SA (2021) German chamomile. In: Gupta RC, Lall R, Srivastava A (eds) Nutraceuticals: efficacy, safety, and toxicity, 2nd edn. Academic Press, London, p 757

    Chapter  Google Scholar 

  165. Ghizlane H, Aziz B (2016) Pharmacological properties of some medicinal plants, its components and using fields. In: Watson RR, Preedy VR (eds) Fruits, vegetables, and herbs: bioactive foods in health promotion. Academic Press, London, San Diego, Cambridge, Oxford, p 41

    Chapter  Google Scholar 

  166. El Mihyaoui A, Esteves da Silva JCG, Charfi S, Candela Castillo ME, Lamarti A, Arnao MB (2022) Chamomile (Matricaria chamomilla L.): a review of ethnomedicinal use, phytochemistry and pharmacological uses. Life 12:479

    Google Scholar 

  167. Höferl M, Wanner J, Tabanca N, Ali A, Gochev V, Schmidt E, Kaul VK, Singh V, Jirovetz L (2020) Biological activity of Matricaria chamomilla essential oils of various chemotypes. Planta Med Int Open 7:e114

    Article  Google Scholar 

  168. Tsivelika N, Sarrou E, Gusheva K, Pankou C, Koutsos T, Chatzopoulou P, Mavromatis A (2018) Phenotypic variation of wild chamomile (Matricaria chamomilla L.) populations and their evaluation for medicinally important essential oil. Biochem Syst Ecol 80:21

    Google Scholar 

  169. Sharifi-Rad M, Nazaruk J, Polito L, Morais-Braga MFB, Rocha JE, Coutinho HDM, Salehi B, Tabanelli G, Montanari C, del Mar CM (2018) Matricaria genus as a source of antimicrobial agents: from farm to pharmacy and food applications. Microbiol Res 215:76

    Article  CAS  PubMed  Google Scholar 

  170. Kapalka GM (2010) Anxiety disorders. In: Kapalka GM (ed) Nutritional and herbal therapies for children and adolescents: a handbook for mental health clinicians. Academic Press, London, p 219

    Chapter  Google Scholar 

  171. Petruľová-Poracká V, Repčák M, Vilková M, Imrich J (2013) Coumarins of Matricaria chamomilla L.: aglycones and glycosides. Food Chem 141:54

    Google Scholar 

  172. Bharathi LK, John KJ (2013) Introduction. In: Momordica genus in Asia—an overview. Springer, New Delhi, p 1

    Google Scholar 

  173. Nagarani G, Abirami A, Siddhuraju P (2014) Food prospects and nutraceutical attributes of Momordica species: a potential tropical bioresources—a review. Food Sci Hum Wellness 3:117

    Article  Google Scholar 

  174. Laczkó-Zöld E, Bacsadi B, Horváth A, Csupor D (2021) Development and validation of a RP-HPLC-DAD method for quantification of charantin in Momordica charantia products. J Food Compos Anal 104:104161

    Article  Google Scholar 

  175. Ramalhete C, Gonçalves BM, Barbosa F, Duarte N, Ferreira M-JU (2022) Momordica balsamina: phytochemistry and pharmacological potential of a gifted species. Phytochem Rev 21:617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Jia S, Shen M, Zhang F, Xie J (2017) Recent advances in Momordica charantia: functional components and biological activities. Int J Mol Sci 18:2555

    Article  PubMed  PubMed Central  Google Scholar 

  177. Zhang F, Lin L, Xie J (2016) A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int J Biol Macromol 92:246

    Article  CAS  PubMed  Google Scholar 

  178. Hsiao P-C, Liaw C-C, Hwang S-Y, Cheng H-L, Zhang L-J, Shen C-C, Hsu F-L, Kuo Y-H (2013) Antiproliferative and hypoglycemic cucurbitane-type glycosides from the fruits of Momordica charantia. J Agric Food Chem 61:2979

    Article  CAS  PubMed  Google Scholar 

  179. Badalamenti N, Modica A, Bazan G, Marino P, Bruno M (2022) The ethnobotany, phytochemistry, and biological properties of Nigella damascene—a review. Phytochemistry 198:113165

    Article  CAS  PubMed  Google Scholar 

  180. Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H (2021) Nigella plants—traditional uses, bioactive phytoconstituents, preclinical and clinical studies. Front Pharmacol 12:625386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ahmad MF, Ahmad FA, Ashraf SA, Saad HH, Wahab S, Khan MI, Ali M, Mohan S, Hakeem KR, Athar MT (2021) An updated knowledge of black seed (Nigella sativa Linn.): review of phytochemical constituents and pharmacological properties. J Herb Med 25:100404

    Google Scholar 

  182. Biswas SK, Kim D-E, Keum Y-S, Saini RK (2018) Metabolite profiling and antioxidant activities of white, red, and black rice (Oryza sativa L.) grains. J Food Meas Charact 12:2484

    Google Scholar 

  183. Pang Y, Ahmed S, Xu Y, Beta T, Zhu Z, Shao Y, Bao J (2018) Bound phenolic compounds and antioxidant properties of whole grain and bran of white, red and black rice. Food Chem 240:212

    Article  CAS  PubMed  Google Scholar 

  184. Samyor D, Das AB, Deka SC (2017) Pigmented rice a potential source of bioactive compounds: a review. Int J Food Sci Technol 52:1073

    Article  CAS  Google Scholar 

  185. Rungratanawanich W, Memo M, Uberti D (2018) Redox homeostasis and natural dietary compounds: focusing on antioxidants of rice (Oryza sativa L.). Nutrients 10:1605

    Google Scholar 

  186. Ito VC, Lacerda LG (2019) Black rice (Oryza sativa L.): a review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem 301:125304

    Google Scholar 

  187. Goufo P, Trindade H (2014) Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr 2:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Song J, Luo J, Ma Z, Sun Q, Wu C, Li X (2019) Quality and authenticity control of functional red yeast rice—a review. Molecules 24:1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhu B, Qi F, Wu J, Yin G, Hua J, Zhang Q, Qin L (2019) Red yeast rice: a systematic review of the traditional uses, chemistry, pharmacology, and quality control of an important Chinese folk medicine. Front Pharmacol 10:1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Avula B, Cohen PA, Wang Y-H, Sagi S, Feng W, Wang M, Zweigenbaum J, Shuangcheng M, Khan IA (2014) Chemical profiling and quantification of monacolins and citrinin in red yeast rice commercial raw materials and dietary supplements using liquid chromatography-accurate QToF mass spectrometry: chemometrics application. J Pharm Biomed Anal 100:243

    Article  CAS  PubMed  Google Scholar 

  191. Zuo Y-J, Wen J, Zhou S-L (2017) Intercontinental and intracontinental biogeography of the eastern Asian–eastern North American disjunct Panax (the ginseng genus, Araliaceae), emphasizing its diversification processes in eastern Asia. Mol Phylogenet Evol 117:60

    Article  PubMed  Google Scholar 

  192. Jovanovski E, Lea-Duvnjak-Smircic KA, Au-Yeung F, Zurbau A, Jenkins AL, Sung M-K, Josse R, Vuksan V (2020) Vascular effects of combined enriched Korean red ginseng (Panax ginseng) and American ginseng (Panax quinquefolius) administration in individuals with hypertension and type 2 diabetes: a randomized controlled trial. Complement Ther Med 49:102338

    Article  PubMed  Google Scholar 

  193. Chen W, Balan P, Popovich DG (2019) Comparison of the ginsenoside composition of Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius L.) and their transformation pathways. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 63. Elsevier, Amsterdam, p 161

    Google Scholar 

  194. Park SK, Hyun SH, In G, Park C-K, Kwak Y-S, Jang Y-J, Kim B, Kim J-H, Han C-K (2021) The antioxidant activities of Korean red ginseng (Panax ginseng) and ginsenosides: a systemic review through in vivo and clinical trials. J Ginseng Res 45:41

    Article  PubMed  Google Scholar 

  195. Ichim MC, de Boer HJ (2021) A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front Pharmacol 11:612071

    Article  PubMed  PubMed Central  Google Scholar 

  196. Yang Y, Ju Z, Yang Y, Zhang Y, Yang L, Wang Z (2021) Phytochemical analysis of Panax species: a review. J Ginseng Res 45:1

    Article  PubMed  Google Scholar 

  197. Ru W, Wang D, Xu Y, He X, Sun Y-E, Qian L, Zhou X, Qin Y (2015) Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov Ther 9:23

    Google Scholar 

  198. Huang X, Li N, Pu Y, Zhang T, Wang B (2019) Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules 24:2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Raman V, Avula B, Galal AM, Wang Y-H, Khan IA (2013) Microscopic and UPLC-UV-MS analyses of authentic and commercial yohimbe (Pausinystalia johimbe) bark samples. J Nat Med 67:42

    Article  CAS  PubMed  Google Scholar 

  200. Tam SW, Worcel M, Wyllie M (2001) Yohimbine: a clinical review. Pharmacol Ther 91:215

    Article  CAS  PubMed  Google Scholar 

  201. Lucas D, Neal-Kababick J, Zweigenbaum J (2015) Characterization and quantitation of yohimbine and its analogs in botanicals and dietary supplements using LC/QTOF-MS and LC/QQQ-MS for determination of the presence of bark extract and yohimbine adulteration. J AOAC Int 98:330

    Article  CAS  PubMed  Google Scholar 

  202. Cohen PA, Wang YH, Maller G, DeSouza R, Khan IA (2016) Pharmaceutical quantities of yohimbine found in dietary supplements in the USA. Drug Test Anal 8:357

    Article  CAS  PubMed  Google Scholar 

  203. Liu Y, Yu H-Y, Xu H-Z, Liu J-J, Meng X-G, Zhou M, Ruan H-L (2018) Alkaloids with immunosuppressive activity from the bark of Pausinystalia yohimbe. J Nat Prod 81:1841

    Article  CAS  PubMed  Google Scholar 

  204. Applequist WL (2015) A brief review of recent controversies in the taxonomy and nomenclature of Sambucus nigra sensu lato. Acta Hortic 1061:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Thomas AL, Byers PL, Avery JD Jr, Kaps M, Gu S, Johnson HY, Millican M (2015) ‘Marge’: a European elderberry for North American producers. Acta Hortic 1061:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sidor A, Gramza-Michałowska A (2015) Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food—a review. J Funct Foods 18:941

    Article  CAS  Google Scholar 

  207. Przybylska-Balcerek A, Szablewski T, Szwajkowska-Michałek L, Świerk D, Cegielska-Radziejewska R, Krejpcio Z, Suchowilska E, Tomczyk Ł, Stuper-Szablewska K (2021) Sambucus nigra extracts—natural antioxidants and antimicrobial compounds. Molecules 26:2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, Stampar F, Ivancic A (2014) Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. J Agric Food Chem 62:5573

    Article  CAS  PubMed  Google Scholar 

  209. Vlachojannis C, Zimmermann BF, Chrubasik-Hausmann S (2015) Quantification of anthocyanins in elderberry and chokeberry dietary supplements. Phytother Res 29:561

    Article  CAS  PubMed  Google Scholar 

  210. Lee J, Finn CE (2007) Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. J Sci Food Agric 87:2665

    Google Scholar 

  211. Tasinov O, Dincheva I, Badjakov I, Kiselova-Kaneva Y, Galunska B, Nogueiras R, Ivanova D (2021) Phytochemical composition, anti-inflammatory and ER stress-reducing potential of Sambucus ebulus L. fruit extract. Plants 10:2446

    Google Scholar 

  212. Mikulic-Petkovsek M, Ivancic A, Todorovic B, Veberic R, Stampar F (2015) Fruit phenolic composition of different elderberry species and hybrids. J Food Sci 80:C2180

    Article  CAS  PubMed  Google Scholar 

  213. Christensen LP, Kaack K, Fretté XC (2008) Selection of elderberry (Sambucus nigra L.) genotypes best suited for the preparation of elderflower extracts rich in flavonoids and phenolic acids. Eur Food Res Technol 227:293

    Google Scholar 

  214. Kaltsa O, Lakka A, Grigorakis S, Karageorgou I, Batra G, Bozinou E, Lalas S, Makris DP (2020) A green extraction process for polyphenols from elderberry (Sambucus nigra) flowers using deep eutectic solvent and ultrasound-assisted pretreatment. Molecules 25:921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Uzlasir T, Kadiroglu P, Selli S, Kelebek H (2021) LC-DAD-ESI-MS/MS characterization of elderberry flower (Sambucus nigra) phenolic compounds in ethanol, methanol, and aqueous extracts. J Food Process Preserv 45:e14478

    Article  CAS  Google Scholar 

  216. Buhrmester RA, Ebinger JE, Seigler DS (2000) Sambunigrin and cyanogenic variability in populations of Sambucus canadensis L. (Caprifoliaceae). Biochem Syst Ecol 28:689

    Google Scholar 

  217. Senica M, Stampar F, Mikulic-Petkovsek M (2019) Harmful (cyanogenic glycoside) and beneficial (phenolic) compounds in different Sambucus species. J Berry Res 9:395

    Article  CAS  Google Scholar 

  218. Jiménez P, Cabrero P, Basterrechea JE, Tejero J, Cordoba-Diaz D, Cordoba-Diaz M, Girbes T (2014) Effects of short-term heating on total polyphenols, anthocyanins, antioxidant activity and lectins of different parts of dwarf elder (Sambucus ebulus L.). Plant Foods Hum Nutr 69:168

    Google Scholar 

  219. Jiménez P, Cabrero P, Cordoba-Diaz D, Cordoba-Diaz M, Garrosa M, Girbés T (2017) Lectin digestibility and stability of elderberry antioxidants to heat treatment in vitro. Molecules 22:95

    Article  PubMed  PubMed Central  Google Scholar 

  220. Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M (2016) Processed elderberry (Sambucus nigra L.) products: a beneficial or harmful food alternative? Food Sci Technol 72:182

    Google Scholar 

  221. Waswa EN, Li J, Mkala EM, Wanga VO, Mutinda ES, Nanjala C, Odago WO, Katumo DM, Gichua MK, Gituru RW, Hu G-W, Wang Q-F (2022) Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). J Ethnopharmacol 292:115102

    Google Scholar 

  222. Schmitzer V, Veberic R, Stampar F (2012) European elderberry (Sambucus nigra L.) and American elderberry (Sambucus canadensis L.): botanical, chemical and health properties of flowers, berries and their products. In: Tuberoso CIG (ed) Berries: properties, consumption and nutrition. Nova Science Publishers, Hauppauge, NY, p 127

    Google Scholar 

  223. Ferreira SS, Silva AM, Nunes FM (2020) Sambucus nigra L. fruits and flowers: chemical composition and related bioactivities. Food Rev Int 38:1237

    Google Scholar 

  224. The World Flora Online (2022) Serenoa Hook.f. http://www.worldfloraonline.org/taxon/wfo-4000035109. Accessed 14 Sept 2022

  225. Kwon Y (2019) Use of saw palmetto (Serenoa repens) extract for benign prostatic hyperplasia. Food Sci Biotechnol 28:1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Saw palmetto (2000) USP 24-NF 19. United States Pharmacopeial Convention, Rockville, MD

    Google Scholar 

  227. Agbabiaka TB, Pittler MH, Wider B, Ernst E (2009) Serenoa repens (saw palmetto): a systematic review of adverse events. Drug Saf 32:637

    Article  PubMed  Google Scholar 

  228. Gresta F, Avola G, Guarnaccia P (2007) Agronomic characterization of some spontaneous genotypes of milk thistle (Silybum marianum L. Gaertn.) in Mediterranean environment. J Herbs Spices Med Plants 12:51

    Google Scholar 

  229. Marceddu R, Dinolfo L, Carrubba A, Sarno M, Di Miceli G (2022) Milk thistle (Silybum marianum L.) as a novel multipurpose crop for agriculture in marginal environments: a review. Agronomy 12:729

    Google Scholar 

  230. McCutcheon A (2020) Adulteration of milk thistle (Silybum marianum). Available via American Botanical Council. https://www.herbalgram.org/resources/botanical-adulterants-prevention-program/adulterants-bulletins/milk-thistle-bulletin-october-2020/ Accessed 19 Oct 2022

  231. Křen V, Valentová K (2022) Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 39:1264

    Article  PubMed  Google Scholar 

  232. Basu SK, Zandi P, Cetzal-Ix W (2019) Fenugreek (Trigonella foenum-graecum L.): distribution, genetic diversity, and potential to serve as an industrial crop for the global pharmaceutical, nutraceutical, and functional food industries. In: Singh RB, Watson RR, Takahashi T (eds) The role of functional food security in global health. Academic Press, London, p 471

    Google Scholar 

  233. The World Flora Online (2022) Trigonella L. http://www.worldfloraonline.org/taxon/wfo-4000039145. Accessed 14 Sept 2022

  234. Mandal S, DebMandal M (2016) Fenugreek (Trigonella foenum-graecum L.) oils. In: Preedy VR (ed) Essential oils in food preservation, flavor and safety. Academic Press, London, p 421

    Chapter  Google Scholar 

  235. Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A (2017) A small plant with big benefits: fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res 61:1600950

    Google Scholar 

  236. Dini I (2018) Spices and herbs as therapeutic foods. In: Holban AM, Grumezescu AM (eds) Food quality: balancing health and disease. Academic Press, London, p 433

    Google Scholar 

  237. Pal D, Mukherjee S (2020) Fenugreek (Trigonella foenum) seeds in health and nutrition. In: Preedy VR, Watson RR (eds) Nuts and seeds in health and disease prevention, 2nd edn. Academic Press, London, p 161

    Chapter  Google Scholar 

  238. Gupta RC, Doss RB, Garg RC, Srivastava A, Lall R, Sinha A (2021) Fenugreek: multiple health benefits. In: Gupta RC, Lall R, Srivastava A (eds) Nutraceuticals, 2nd edn. Academic Press, London, p 585

    Chapter  Google Scholar 

  239. Shawky E, Sobhy AA, Ghareeb DA, Eldin SMS, Selim DA (2022) Comparative metabolomics analysis of bioactive constituents of the leaves of different Trigonella species: correlation study to α-amylase and α-glycosidase inhibitory effects. Ind Crops Prod 182:114947

    Article  CAS  Google Scholar 

  240. Song G-Q, Hancock JF (2011) Vaccinium. In: Kole C (ed) Wild crop relatives: genomic and breeding resources: temperate fruits. Springer, Berlin, p 197

    Chapter  Google Scholar 

  241. Brendler T, Howell A (2020) American cranberry (Vaccinium macrocarpon Ait.) and the maintenance of urinary tract health. In: Máthé Á (ed) Medicinal and aromatic plants of North America. Springer, Cham, Switzerland, p 81

    Chapter  Google Scholar 

  242. Hurkova K, Uttl L, Rubert J, Navratilova K, Kocourek V, Stranska-Zachariasova M, Paprstein F, Hajslova J (2019) Cranberries versus lingonberries: a challenging authentication of similar Vaccinium fruit. Food Chem 284:162

    Article  CAS  PubMed  Google Scholar 

  243. Cesonienė L, Daubaras R, Jasutienė I, Venclovienė J, Miliauskienė I (2011) Evaluation of the biochemical components and chromatic properties of the juice of Vaccinium macrocarpon Aiton and Vaccinium oxycoccos L. Plant Foods Hum Nutr 66:238

    Article  PubMed  Google Scholar 

  244. Brown PN, Turi CE, Shipley PR, Murch SJ (2012) Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Med 78:630

    Google Scholar 

  245. Lee J, Finn CE (2012) Lingonberry (Vaccinium vitis-idaea L.) grown in the Pacific Northwest of North America: anthocyanin and free amino acid composition. J Funct Foods 4:213

    Google Scholar 

  246. Krueger CG, Reed JD, Feliciano RP, Howell AB (2013) Quantifying and characterizing proanthocyanidins in cranberries in relation to urinary tract health. Anal Bioanal Chem 405:4385

    Article  CAS  PubMed  Google Scholar 

  247. Jungfer E, Zimmermann BF, Ruttkat A, Galensa R (2012) Comparing procyanidins in selected Vaccinium species by UHPLC-MS2 with regard to authenticity and health effects. J Agric Food Chem 60:9688

    Article  CAS  PubMed  Google Scholar 

  248. Nemzer BV, Al-Taher F, Yashin A, Revelsky I, Yashin Y (2022) Cranberry: chemical composition, antioxidant activity and impact on human health: overview. Molecules 27:1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Blumberg JB, Camesano TA, Cassidy A, Kris-Etherton P, Howell A, Manach C, Ostertag LM, Sies H, Skulas-Ray A, Vita JA (2013) Cranberries and their bioactive constituents in human health. Adv Nutr 4:618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Houghton PJ (1988) The biological activity of Valerian and related plants. J Ethnopharmacol 22:121

    Article  CAS  PubMed  Google Scholar 

  251. Houghton PJ (1997) The chemistry of Valeriana. In: Houghton PJ (ed) Valerian: the genus Valeriana. CRC Press, London, p 21

    Google Scholar 

  252. Bos R, Hendriks H, Scheffer JJC, Woerdenbag HJ (1998) Cytotoxic potential of valerian constituents and valerian tinctures. Phytomedicine 5:219

    Article  CAS  PubMed  Google Scholar 

  253. Hobbs C (1989) Valerian (Valeriana officinalis): a literature review. HerbalGram 21:19

    Google Scholar 

  254. Estrada-Soto S, Rivera-Leyva J, Ramírez-Espinosa JJ, Castillo-España P, Aguirre-Crespo F, Hernández-Abreu O (2010) Vasorelaxant effect of Valeriana edulis ssp. procera (Valerianaceae) and its mode of action as calcium channel blocker. J Pharm Pharmacol 62:1167

    Google Scholar 

  255. Gehlot A, Chaudhary N, Devi J, Joshi R, Kumar D, Bhushan S (2022) Induction and submerged cultivation of Valeriana jatamansi adventitious root cultures for production of valerenic acids and its derivatives. Plant Cell Tissue Organ Cult 148:347

    Article  CAS  Google Scholar 

  256. Singh N, Gupta AP, Singh B, Kaul VK (2006) Quantification of valerenic acid in Valeriana jatamansi and Valeriana officinalis by HPTLC. Chromatographia 63:209

    Article  CAS  Google Scholar 

  257. Raal A, Arak E, Orav A, Kailas T, Müürisepp M (2007) Variation in the composition of the essential oil of commercial Valeriana officinalis L. roots from different countries. J Essent Oil Res 20:524

    Google Scholar 

  258. Bhatt ID, Dauthal P, Rawat S, Gaira KS, Jugran A, Rawal RS, Dhar U (2012) Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Sci Hortic 136:61

    Article  CAS  Google Scholar 

  259. Alfaro-Romero A, Balderas-López JL, Duarte-Lisci G, Navarrete A (2016) Root scent composition in Valeriana officinalis and Valeriana edulis ssp. procera analyzed by HS-SPME-GC-MS. J Essent Oil-Bear Plants 19:1821

    Google Scholar 

  260. Navarrete A, Avula B, Choi Y-W, Khan IA (2006) Chemical fingerprinting of Valeriana species: simultaneous determination of valerenic acids, flavonoids, and phenylpropanoids using liquid chromatography with ultraviolet detection. J AOAC Int 89:8

    Article  CAS  PubMed  Google Scholar 

  261. Patočka J, Jakl J (2010) Biomedically relevant chemical constituents of Valeriana officinalis. J Appl Biomed 8:11

    Article  Google Scholar 

  262. Atta-ur-Rahman, Dur-e-Shahwar, Naz A, Choudhary MI (2003) Withanolides from Withania coagulans. Phytochemistry 63:387

    Article  CAS  Google Scholar 

  263. Girme A, Saste G, Pawar S, Balasubramaniam AK, Musande K, Darji B, Satti NK, Verma MK, Anand R, Singh R, Vishwakarma RA, Hingorani L (2020) Investigating 11 withanosides and withanolides by UHPLC-PDA and mass fragmentation studies from ashwagandha (Withania somnifera). ACS Omega 5:27933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. White PT, Subramanian C, Motiwala HF, Cohen MS (2016) Natural withanolides in the treatment of chronic diseases. In: Gupta SC, Prasad S, Aggarwal BB (eds) Anti-inflammatory nutraceuticals and chronic diseases. Springer, Cham, Switzerland, p 329

    Chapter  Google Scholar 

  265. Xia G-Y, Cao S-J, Chen L-X, Qiu F (2022) Natural withanolides, an update. Nat Prod Rep 39:784

    Article  CAS  PubMed  Google Scholar 

  266. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Dhanani T, Shah S, Gajbhiye NA, Kumar S (2017) Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab J Chem 10:S1193

    Article  CAS  Google Scholar 

  268. Jain R, Kachhwaha S, Kothari SL (2012) Phytochemistry, pharmacology, and biotechnology of Withania somnifera and Withania coagulans: a review. J Med Plant Res. 6:5388

    Article  Google Scholar 

  269. Dutta R, Khalil R, Green R, Mohapatra SS, Mohapatra S (2019) Withania somnifera (ashwagandha) and withaferin A: potential in integrative oncology. Int J Mol Sci 20:5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Ali A, Maher S, Khan SA, Chaudhary MI, Musharraf SG (2015) Sensitive quantification of six steroidal lactones in Withania coagulans extract by UHPLC electrospray tandem mass spectrometry. Steroids 104:176

    Article  CAS  PubMed  Google Scholar 

  271. Modi SJ, Tiwari A, Ghule C, Pawar S, Saste G, Jagtap S, Singh R, Deshmukh A, Girme A, Hingorani L (2022) Pharmacokinetic study of withanosides and withanolides from Withania somnifera using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Molecules 27:1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Subbaraju GV, Vanisree M, Rao CV, Sivaramakrishna C, Sridhar P, Jayaprakasam B, Nair MG (2006) Ashwagandhanolide, a bioactive dimeric thiowithanolide isolated from the roots of Withania somnifera. J Nat Prod 69:1790

    Article  CAS  PubMed  Google Scholar 

  273. Khan MI, Maqsood M, Saeed RA, Alam A, Sahar A, Kieliszek M, Miecznikowski A, Muzammil HS, Aadil RM (2021) Phytochemistry, food application, and therapeutic potential of the medicinal plant Withania coagulans: a review. Molecules 26:6881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH (2011) High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement Altern Med 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Filipiak-Szok A, Kurzawa M, Szłyk E, Twarużek M, Błajet-Kosicka A, Grajewski J (2017) Determination of mycotoxins, alkaloids, phytochemicals, antioxidants and cytotoxicity in Asiatic ginseng (Ashwagandha, Dong quai, Panax ginseng). Chem Zvesti 71:1073

    CAS  PubMed  Google Scholar 

  276. Maqsood M, Qureshi R, Ikram M, Ahmad MS, Jabeen B, Asi MR, Khan JA, Ali S, Lilge L (2018) In vitro anticancer activities of Withania coagulans against HeLa, MCF-7, RD, RG2, and INS-1 cancer cells and phytochemical analysis. Integr Med Res 7:184

    Article  PubMed  PubMed Central  Google Scholar 

  277. Mundkinajeddu D, Sawant LP, Koshy R, Akunuri P, Singh VK, Mayachari A, Sharaf MH, Balasubramanian M, Agarwal A (2014) Development and validation of high performance liquid chromatography method for simultaneous estimation of flavonoid glycosides in Withania somnifera aerial parts. Int Sch Res Notices 2014:351547

    Google Scholar 

  278. Singh P, Guleri R, Singh V, Kaur G, Kataria H, Singh B, Kaur G, Kaul SC, Wadhwa R, Pati PK (2015) Biotechnological interventions in Withania somnifera (L.) Dunal. Biotechnol Genet Eng Rev 31:1

    Google Scholar 

  279. Shukla K, Dikshit P, Shukla R, Gambhir JK (2012) The aqueous extract of Withania coagulans fruit partially reverses nicotinamide/streptozotocin-induced diabetes mellitus in rats. J Med Food 15:718

    Article  PubMed  PubMed Central  Google Scholar 

  280. Jayaprakasam B, Strasburg GA, Nair MG (2004) Potent lipid peroxidation inhibitors from Withania somnifera fruits. Tetrahedron 60:3109

    Article  CAS  Google Scholar 

  281. Patil S, Shinde RD, Leong-Škorničková J, Chaudhari R (2021) Fixing stray traditions in gingers: the identity and nomenclatural history of Zingiber neesanum and other entwined names. Taxon 70:1339

    Article  Google Scholar 

  282. Khan S, Pandotra P, Qazi AK, Lone SA, Muzafar M, Gupta AP, Gupta S (2016) Medicinal and nutritional qualities of Zingiber officinale. In: Watson RR, Preedy VR (eds) Fruits, vegetables, and herbs. Academic Press, London, p 525

    Chapter  Google Scholar 

  283. Mbaveng AT, Kuete V (2017) Zingiber officinale. In: Kuete V (ed) Medicinal spices and vegetables from Africa. Academic Press, London, p 627

    Chapter  Google Scholar 

  284. Semwal RB, Semwal DK, Combrinck S, Viljoen AM (2015) Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry 117:554

    Article  CAS  PubMed  Google Scholar 

  285. Mao Q-Q, Xu X-Y, Cao S-Y, Gan R-Y, Corke H, Beta T, Li H-B (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8:185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Baliga MS, Shivashankara AR, Haniadka R, Palatty PL, Arora R, Fayad R (2013) Ginger (Zingiber officinale Roscoe): an ancient remedy and modern drug in gastrointestinal disorders. In: Watson RR, Preedy VR (eds) Bioactive food as dietary interventions for liver and gastrointestinal disease. Academic Press, San Diego, p 187

    Chapter  Google Scholar 

  287. Wuttke W, Jarry H, Haunschild J, Stecher G, Schuh M, Seidlova-Wuttke D (2014) The non-estrogenic alternative for the treatment of climacteric complaints: black cohosh (Cimicifuga or Actaea racemosa). J Steroid Biochem Mol Biol 139:302

    Article  CAS  PubMed  Google Scholar 

  288. Einbond LS, Shimizu M, Xiao D, Nuntanakorn P, Lim JTE, Suzui M, Seter C, Pertel T, Kennelly EJ, Kronenberg F, Weinstein IB (2004) Growth inhibitory activity of extracts and purified components of black cohosh on human breast cancer cells. Breast Cancer Res Treat 83:221

    Article  CAS  PubMed  Google Scholar 

  289. Yue GG-L, Xie S, Lee JK-M, Kwok H-F, Gao S, Nian Y, Wu X-X, Wong C-K, Qiu M-H, Lau CB-S (2016) New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep 6:35263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Düker E-M, Kopanski L, Jarry H, Wuttke W (1991) Effects of extracts from Cimicifuga racemosa on gonadotropin release in menopausal women and ovariectomized rats. Planta Med 57:420

    Article  PubMed  Google Scholar 

  291. Mathew B, Biju RS (2008) Neuroprotective effects of garlic: a review. Libyan J Med 3:23

    PubMed  PubMed Central  Google Scholar 

  292. Gull I, Saeed M, Shaukat H, Aslam SM, Samra ZQ, Athar AM (2012) Inhibitory effect of Allium sativum and Zingiber officinale extracts on clinically important drug resistant pathogenic bacteria. Ann Clin Microbiol Antimicrob 11:8

    Article  PubMed  PubMed Central  Google Scholar 

  293. Matsuura H, Ushiroguchi T, Itakura Y, Hayashi N, Fuwa T (1988) A furostanol glycoside from garlic, bulbs of Allium sativum L. Chem Pharm Bull 36:3659

    Article  CAS  Google Scholar 

  294. Lanzotti V, Barile E, Antignani V, Bonanomi G, Scala F (2012) Antifungal saponins from bulbs of garlic, Allium sativum L. var. voghiera. Phytochemistry 78:126

    Article  CAS  PubMed  Google Scholar 

  295. Gebhardt R, Beck H (1996) Differential inhibitory effects of garlic-derived organosulfur compounds on cholesterol biosynthesis in primary rat hepatocyte cultures. Lipids 31:1269

    Article  CAS  PubMed  Google Scholar 

  296. Sobenin IA, Nedosugova LV, Filatova LV, Balabolkin MI, Gorchakova TV, Orekhov AN (2008) Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: the results of double-blinded placebo-controlled study. Acta Diabetol 45:1

    Article  PubMed  Google Scholar 

  297. Sobenin IA, Pryanishnikov VV, Kunnova LM, Rabinovich YA, Martirosyan DM, Orekhov AN (2010) The effects of time-released garlic powder tablets on multifunctional cardiovascular risk in patients with coronary artery disease. Lipids Health Dis 9:119

    Article  PubMed  PubMed Central  Google Scholar 

  298. Țigu AB, Moldovan CS, Toma V-A, Farcaș AD, Moț AC, Jurj A, Fischer-Fodor E, Mircea C, Pârvu M (2021) Phytochemical analysis and in vitro effects of Allium fistulosum L. and Allium sativum L. extracts on human normal and tumor cell lines: a comparative study. Molecules 26:574

    Google Scholar 

  299. Jung Y, Park H, Zhao HY, Jeon R, Ryu JH, Kim WY (2014) Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent. Mol Cells 37:547

    Article  Google Scholar 

  300. Womble D, Helderman JH (1988) Enhancement of allo-resposiveness of human lymphocytes by acemannan (CarrisynTM). Int J Immunopharmacol 10:967

    Article  CAS  PubMed  Google Scholar 

  301. Im S-A, Oh S-T, Song S, Kim M-R, Kim D-S, Woo S-S, Jo TH, Park YI, Lee C-K (2005) Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol 5:271

    Article  CAS  PubMed  Google Scholar 

  302. Quezada MP, Salinas C, Gotteland M, Cardemil L (2017) Acemannan and fructans from Aloe vera (Aloe barbadensis Miller) plants as novel prebiotics. J Agric Food Chem 65:10029

    Article  CAS  PubMed  Google Scholar 

  303. Purwar R (2019) Antimicrobial textiles. In: Shahid-ul I, Butola BS (eds) The impact and prospects of green chemistry for textile technology. Woodhead Publishing, Cambridge, MA, p 281

    Google Scholar 

  304. Salah F, Ghoul YE, Mahdhi A, Majdoub H, Jarroux N, Sakli F (2017) Effect of the deacetylation degree on the antibacterial and antibiofilm activity of acemannan from Aloe vera. Ind Crops Prod 103:13

    Article  CAS  Google Scholar 

  305. Ali SW, Purwar R, Joshi M, Rajendran S (2014) Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21:2063

    Article  CAS  Google Scholar 

  306. Yates KM, Rosenberg LJ, Harris CK, Bronstad DC, King GK, Biehle GA, Walker B, Ford CR, Hall JE, Tizard IR (1992) Pilot study of the effect of acemannan in cats infected with feline immunodeficiency virus. Vet Immunol Immunopathol 35:177

    Article  CAS  PubMed  Google Scholar 

  307. Huseini HF, Kianbakht S, Hajiaghaee R, Dabaghian FH (2012) Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Planta Med 78:311

    Article  CAS  PubMed  Google Scholar 

  308. Bunyapraphatsara N, Yongchaiyudha S, Rungpitarangsi V, Chokechaijaroenporn O (1996) Antidiabetic activity of Aloe vera L. juice II. Clinical trial in diabetes mellitus patients in combination with glibenclamide. Phytomedicine 3:245

    Google Scholar 

  309. Mesripour A, Moghimi F, Rafieian-Kopaie M (2016) The effect of Cinnamomum zeylanicum bark water extract on memory performance in alloxan-induced diabetic mice. Res Pharm Sci 11:318

    Article  Google Scholar 

  310. Wariyapperuma WANM, Kannangara S, Wijayasinghe YS, Subramanium S, Jayawardena B (2020) In vitro anti-diabetic effects and phytochemical profiling of novel varieties of Cinnamomum zeylanicum (L.) extracts. PeerJ 8:e10070

    Google Scholar 

  311. Witkamp R (2010) Biologically active compounds in food products and their effects on obesity and diabetes. In: Liu HW, Mander L (eds) Comprehensive natural products II: chemistry and biology. Elsevier Science, London, p 509

    Chapter  Google Scholar 

  312. Ono E, Inoue J, Hashidume T, Shimizu M, Sato R (2011) Anti-obesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet. Biochem Biophys Res Commun 410:677

    Article  CAS  PubMed  Google Scholar 

  313. Stohs SJ, Preuss HG, Keith SC, Keith PL, Miller H, Kaats GR (2011) Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int J Med Sci 8:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Haller C, Duan M, Jacob P, Benowitz N (2008) Human pharmacology of a performance-enhancing dietary supplement under resting and exercise conditions. Br J Clin Pharmacol 65:833

    Article  PubMed  PubMed Central  Google Scholar 

  315. Ruiz-Moreno C, Del Coso J, Giráldez-Costas V, González-García J, Gutiérrez-Hellín J (2021) Effects of p-synephrine during exercise: a brief narrative review. Nutrients 13:233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Deshmukh N, Stohs S, Magar C, Kale A, Sowmya B (2017) Bitter orange (Citrus aurantium L.) extract subchronic 90-day safety study in rats. Toxicol Rep 4:598

    Google Scholar 

  317. Shara M, Stohs SJ, Smadi MM (2018) Safety evaluation of p-synephrine following 15 days of oral administration to healthy subjects: a clinical study. Phytother Res 32:125

    Article  CAS  PubMed  Google Scholar 

  318. Zorniak M, Szydlo B, Krzeminski TF (2017) Crataegus special extract WS 1442: up-to-date review of experimental and clinical experiences. J Physiol Pharmacol 68:521

    CAS  PubMed  Google Scholar 

  319. Tassell MC, Kingston R, Gilroy D, Lehane M, Furey A (2010) Hawthorn (Crataegus spp.) in the treatment of cardiovascular disease. Pharmacogn Rev 4:32

    Google Scholar 

  320. Al Makdessi S, Sweidan H, Dietz K, Jacob R (1999) Protective effect of Crataegus oxyacantha against reperfusion arrhythmias after global no-flow ischemia in the rat heart. Basic Res Cardiol 94:71

    Article  CAS  PubMed  Google Scholar 

  321. Brixius K, Willms S, Napp A, Tossios P, Ladage D, Bloch W, Mehlhorn U, Schwinger RHG (2006) Crataegus special extract WS®1442 induces an endothelium-dependent, no-mediated vasorelaxation via enos-phosphorylation at serine 1177. Cardiovasc Drugs Ther 20:177

    Article  PubMed  Google Scholar 

  322. Mackenzie GG, Carrasquedo F, Delfino JM, Keen CL, Fraga CG, Oteiza PI (2003) Epicatechin, catechin, and dimeric procyanidins inhibit PMA-induced NF-kappaB activation at multiple steps in Jurkat T cells. FASEB J 18:167

    Article  PubMed  Google Scholar 

  323. Jayanarayanan S, Smijin S, Peeyush KT, Anju TR, Paulose CS (2013) NMDA and AMPA receptor mediated excitotoxicity in cerebral cortex of streptozotocin induced diabetic rat: ameliorating effects of curcumin. Chem Biol Interact 201:39

    Article  CAS  PubMed  Google Scholar 

  324. Kuroda M, Mimaki Y, Nishiyama T, Mae T, Kishida H, Tsukagawa M, Takahashi K, Kawada T, Nakagawa K, Kitahara M (2005) Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice. Biol Pharm Bull 28:937

    Google Scholar 

  325. Holubarsch CJ, Colucci WS, Meinertz T, Gaus W, Tendera M (2008) The efficacy and safety of Crataegus extract WS® 1442 in patients with heart failure: the SPICE trial. Eur J Heart Fail 10:1255

    Article  PubMed  Google Scholar 

  326. Zhang Z, Ho WKK, Huang Y, James AE, Wang Lam L, Chen Z-Y (2002) Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J Nutr 132:5

    Article  CAS  PubMed  Google Scholar 

  327. Yee WL, Wang Q, Agdinaoay T, Ko D, Chang H, Grandinetti A, Franke AA, Theriault A (2002) Green tea catechins decrease apolipoprotein B-100 secretion from HepG2 cells. Mol Cell Biochem 229:85

    Article  CAS  PubMed  Google Scholar 

  328. Montagut G, Baiges I, Valls J, Terra X, del Bas JM, Vitrac X, Richard T, Mérillon J-M, Arola L, Blay M, Bladé C, Fernández-Larrea J, Pujadas G, Salvadó J, Ardévol A (2009) A trimer plus a dimer-gallate reproduce the bioactivity described for an extract of grape seed procyanidins. Food Chem 116:265

    Article  CAS  Google Scholar 

  329. Kim J, Lee I, Seo J, Jung M, Kim Y, Yim N, Bae K (2010) Vitexin, orientin and other flavonoids from Spirodela polyrhiza inhibit adipogenesis in 3T3-L1 cells. Phytother Res 24:1543

    Article  CAS  PubMed  Google Scholar 

  330. Elango C, Devaraj SN (2010) Immunomodulatory effect of hawthorn extract in an experimental stroke model. J Neuroinflammation 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  331. Borghi SM, Carvalho TT, Staurengo-Ferrari L, Hohmann MS, Pinge-Filho P, Casagrande R, Verri WA Jr (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 76:1141

    Article  CAS  PubMed  Google Scholar 

  332. Zhang LJ, Wu CF, Meng XL, Yuan D, Cai XD, Wang QL, Yang JY (2008) Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci Lett 447:48

    Article  CAS  PubMed  Google Scholar 

  333. Chen F, Wang H, Xiang X, Yuan J, Chu W, Xue X, Zhu H, Ge H, Zou M, Feng H, Lin J (2014) Curcumin increased the differentiation rate of neurons in neural stem cells via wnt signaling in vitro study. J Surg Res 192:298

    Article  CAS  PubMed  Google Scholar 

  334. Zingg J-M, Hasan ST, Cowan D, Ricciarelli R, Azzi A, Meydani M (2012) Regulatory effects of curcumin on lipid accumulation in monocytes/macrophages. J Cell Biochem 113:833

    Article  CAS  PubMed  Google Scholar 

  335. Zhao J-F, Ching L-C, Huang Y-C, Chen C-Y, Chiang A-N, Kou YR, Shyue S-K, Lee T-S (2012) Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis. Mol Nutr Food Res 56:691

    Article  CAS  PubMed  Google Scholar 

  336. Kim YS, Kwon JS, Cho YK, Jeong MH, Cho JG, Park JC, Kang JC, Ahn Y (2012) Curcumin reduces the cardiac ischemia-reperfusion injury: involvement of the toll-like receptor 2 in cardiomyocytes. J Nutr Biochem 23:1514

    Article  CAS  PubMed  Google Scholar 

  337. Yodkeeree S, Chaiwangyen W, Garbisa S, Limtrakul P (2009) Curcumin, demethoxycurcumin, and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 20:87

    Article  CAS  PubMed  Google Scholar 

  338. Simon A, Allais DP, Duroux JP, Basly JP, Durand-Fontanier S, Delage C (1998) Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Lett 129:111

    Article  CAS  PubMed  Google Scholar 

  339. Lin H-Y, Lin J-N, Ma J-W, Yang N-S, Ho C-T, Kuo S-C, Way T-D (2015) Demethoxycurcumin induces autophagic and apoptotic responses on breast cancer cells in photodynamic therapy. J Funct Foods 12:439

    Article  CAS  Google Scholar 

  340. Prasad CP, Rath G, Mathur S, Bhatnagar D, Ralhan R (2010) Expression analysis of maspin in invasive ductal carcinoma of breast and modulation of its expression by curcumin in breast cancer cell lines. Chem Biol Interact 183:455

    Article  CAS  PubMed  Google Scholar 

  341. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin. J Med Chem 60:1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Aucoin M, Cooley K, Saunders PR, Carè J, Anheyer D, Medina DN, Cardozo V, Remy D, Hannan N, Garber A (2020) The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review. Adv Integr Med 7:203

    Google Scholar 

  343. Woelkart K, Bauer R (2007) The role of alkamides as an active principle of Echinacea. Planta Med 73:615

    Article  CAS  PubMed  Google Scholar 

  344. Sharifi-Rad M, Mnayer D, Morais-Braga MFB, Carneiro JNP, Bezerra CF, Coutinho HDM, Salehi B, Martorell M, Del Mar CM, Soltani-Nejad A, Uribe YAH, Yousaf Z, Iriti M, Sharifi-Rad J (2018) Echinacea plants as antioxidant and antibacterial agents: from traditional medicine to biotechnological applications. Phytother Res 32:1653

    Article  PubMed  Google Scholar 

  345. Fu R, Zhang P, Deng Z, Jin G, Guo Y, Zhang Y (2021) Diversity of antioxidant ingredients among Echinacea species. Ind Crops Prod 170:113699

    Article  CAS  Google Scholar 

  346. Kim H, Calderón AI (2022) Rational and safe use of the top two botanical dietary supplements to enhance the immune system. Comb Chem High Throughput Screen 25:1129

    Article  CAS  PubMed  Google Scholar 

  347. Manayi A, Vazirian M, Saeidnia S (2015) Echinacea purpurea: pharmacology, phytochemistry and analysis methods. Pharmacogn Rev 9:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Woelkart K, Xu W, Pei Y, Makriyannis A, Picone RP, Bauer R (2005) The endocannabinoid system as a target for alkamides from Echinacea angustifolia roots. Planta Med 71:701

    Article  CAS  PubMed  Google Scholar 

  349. Raduner S, Majewska A, Chen JZ, Xie XQ, Hamon J, Faller B, Altmann KH, Gertsch J (2006) Alkylamides from Echinacea are a new class of cannabinomimetics. Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects. J Biol Chem 281:14192

    Google Scholar 

  350. Chen H, Jing FC, Li CL, Tu PF, Zheng QS, Wang ZH (2007) Echinacoside prevents the striatal extracellular levels of monoamine neurotransmitters from diminution in 6-hydroxydopamine lesion rats. J Ethnopharmacol 114:285

    Article  CAS  PubMed  Google Scholar 

  351. Burlou-Nagy C, Bănică F, Jurca T, Vicaș LG, Marian E, Muresan ME, Bácskay I, Kiss R, Fehér P, Pallag A (2022) Echinacea purpurea (L.) Moench: biological and pharmacological properties. A review. Plants 11:1244

    Google Scholar 

  352. Li F, Yang Y, Zhu P, Chen W, Qi D, Shi X, Zhang C, Yang Z, Li P (2012) Echinacoside promotes bone regeneration by increasing OPG/RANKL ratio in MC3T3-E1 cells. Fitoterapia 83:1443

    Article  CAS  PubMed  Google Scholar 

  353. Wang W, Luo J, Liang Y, Li X (2016) Echinacoside suppresses pancreatic adenocarcinoma cell growth by inducing apoptosis via the mitogen-activated protein kinase pathway. Mol Med Rep 13:2613

    Article  CAS  PubMed  Google Scholar 

  354. Zhu D, Zhang N, Zhou X, Zhang M, Liu Z, Liu X (2017) Cichoric acid regulates the hepatic glucose homeostasis via AMPK pathway and activates the antioxidant response in high glucose-induced hepatocyte injury. RSC Adv 7:1363

    Article  CAS  Google Scholar 

  355. McDougall B, King PJ, Wu BW, Hostomsky Z, Reinecke MG, Robinson WE (1998) Dicaffeoylquinic and dicaffeoyltartaric acids are selective inhibitors of human immunodeficiency virus type 1 integrase. Antimicrob Agents Chemother 42:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S (2018) The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 29:535

    Article  CAS  PubMed  Google Scholar 

  357. Gao J, Xiang S, Wei X, Yadav RI, Han M, Zheng W, Zhao L, Shi Y, Cao Y (2021) Icariin promotes the osteogenesis of bone marrow mesenchymal stem cells through regulating sclerostin and activating the wnt/β-catenin signaling pathway. Biomed Res Int 2021:6666836

    Article  PubMed  PubMed Central  Google Scholar 

  358. Li C, Li Q, Mei Q, Lu T (2015) Pharmacological effects and pharmacokinetic properties of icariin, the major bioactive component in Herba Epimedii. Life Sci 126:57

    Article  CAS  PubMed  Google Scholar 

  359. Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z (2019) An outline for the pharmacological effect of icariin in the nervous system. Eur J Pharmacol 842:20

    Article  CAS  PubMed  Google Scholar 

  360. Bi Z, Zhang W, Yan X (2022) Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother 151:113180

    Article  CAS  PubMed  Google Scholar 

  361. Wang Y, Zhu T, Wang M, Zhang F, Zhang G, Zhao J, Zhang Y, Wu E, Li X (2019) Icariin attenuates M1 activation of microglia and Aβ plaque accumulation in the hippocampus and prefrontal cortex by up-regulating PPARγ in restraint/isolation-stressed APP/PS1 mice. Front Neurosci 13:291

    Article  PubMed  PubMed Central  Google Scholar 

  362. Zhang X, Kang Z, Li Q, Zhang J, Cheng S, Chang H, Wang S, Cao S, Li T, Li J, Wang Y, Song Y, Yu H (2018) Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed Pharmacother 99:810

    Article  CAS  PubMed  Google Scholar 

  363. de Oliveira PRB, da Costa CA, de Bem GF, Cordeiro VS, Santos IB, de Carvalho LC, da Conceição EP, Lisboa PC, Ognibene DT, Sousa PJ, Martins GR, da Silva AJ, de Moura RS, Resende AC (2015) Euterpe oleracea Mart.-derived polyphenols protect mice from diet-induced obesity and fatty liver by regulating hepatic lipogenesis and cholesterol excretion. PLoS One 10:e0143721

    Google Scholar 

  364. Gordon A, Cruz APG, Cabral LMC, de Freitas SC, Taxi CMAD, Donangelo CM, de Andrade Mattietto R, Friedrich M, da Matta VM, Marx F (2012) Chemical characterization and evaluation of antioxidant properties of açaí fruits (Euterpe oleracea Mart.) during ripening. Food Chem 133:256

    Google Scholar 

  365. Sadowska-Krępa E, Kłapcińska B, Podgórski T, Szade B, Tyl K, Hadzik A (2015) Effects of supplementation with açaí (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study. Biol Sport 32:161

    Google Scholar 

  366. Martino HSD, dos Santos Dias MM, Noratto G, Talcott S, Mertens-Talcott SU (2016) Anti-lipidaemic and anti-inflammatory effect of açaí (Euterpe oleracea Martius) polyphenols on 3T3-L1 adipocytes. J Funct Foods 23:432

    Article  CAS  Google Scholar 

  367. Oliveira de Souza M, Souza E Silva L, Lopes de Brito Magalhães C, Baroos de Figueiredo B, Costa DC, Silva ME, Pedrosa ML (2012) The hypocholesterolemic activity of açaí (Euterpe oleracea Mart.) is mediated by the enhanced expression of the ATP-binding cassette, subfamily G transporters 5 and 8 and low-density lipoprotein receptor genes in the rat. Nutr Res 32:976

    Google Scholar 

  368. Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T (2006) Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem Pharmacol 71:1184

    Article  CAS  PubMed  Google Scholar 

  369. Thilavech T, Adisakwattana S (2019) Cyanidin-3-rutinoside acts as a natural inhibitor of intestinal lipid digestion and absorption. BMC Complement Altern Med 19:242

    Article  PubMed  PubMed Central  Google Scholar 

  370. Choppa T, Selvaraj CI, Zachariah A (2015) Evaluation and characterization of Malabar tamarind [Garcinia cambogia (Gaertn.) Desr.] seed oil. J Food Sci Technol 52:5906

    Google Scholar 

  371. Roy S, Rink C, Khanna S, Phillips C, Bagchi D, Bagchi M, Sen CK (2004) Body weight and abdominal fat gene expression profile in response to a novel hydroxycitric acid-based dietary supplement. Gene Expr 11:251

    Article  PubMed  Google Scholar 

  372. Mazzio EA, Soliman KF (2009) In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res 23:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464

    Article  CAS  PubMed  Google Scholar 

  374. Di Micco S, Masullo M, Bandak AF, Berger JM, Riccio R, Piacente S, Bifulco G (2019) Garcinol and related polyisoprenylated benzophenones as topoisomerase II inhibitors: biochemical and molecular modeling studies. J Nat Prod 82:2768

    Article  PubMed  Google Scholar 

  375. Venkateswara Rao G, Karunakara AC, Santhosh Babu RR, Ranjit D, Chandrasekara Reddy G (2010) Hydroxycitric acid lactone and its salts: preparation and appetite suppression studies. Food Chem 120:235

    Article  CAS  Google Scholar 

  376. Anton SD, Shuster J, Leeuwenburgh C (2011) Investigations of botanicals on food intake, satiety, weight loss and oxidative stress: study protocol of a double-blind, placebo-controlled, crossover study. Chin J Integr Med 9:1190

    Article  Google Scholar 

  377. Xu SL, Choi RCY, Zhu KY, Leung K-W, Guo AJ, Bi D, Xu H, Lau DTW, Dong TTX, Tsim KWK (2012) Isorhamnetin, a flavonol aglycone from Ginkgo biloba L., induces neuronal differentiation of cultured PC12 cells: potentiating the effect of nerve growth factor. Evid Based Complement Altern Med 2012:278273

    Google Scholar 

  378. Chen T-R, Wei L-H, Guan X-Q, Huang C, Liu Z-Y, Wang F-J, Hou J, Jin Q, Liu Y-F, Wen P-H, Zhang S-J, Ge G-B, Guo W-Z (2019) Biflavones from Ginkgo biloba as inhibitors of human thrombin. Bioorg Chem 92:103199

    Article  CAS  PubMed  Google Scholar 

  379. Cho Y-L, Park J-G, Kang HJ, Kim W, Cho MJ, Jang J-H, Kwon M-G, Kim S, Lee S-H, Lee J, Kim Y-G, Park Y-J, Kim WK, Bae K-H, Kwon B-M, Chung SJ, Min J-K (2019) Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol Res 139:325

    Article  CAS  PubMed  Google Scholar 

  380. Liu P-K, Weng Z-M, Ge G-B, Li H-L, Ding L-L, Dai Z-R, Hou X-D, Leng Y-H, Yu Y, Hou J (2018) Biflavones from Ginkgo biloba as novel pancreatic lipase inhibitors: inhibition potentials and mechanism. Int J Biol Macromol 118:2216

    Article  CAS  PubMed  Google Scholar 

  381. Song Y-Q, He R-J, Pu D, Guan X-Q, Shi J-H, Li Y-G, Hou J, Jia S-N, Qin W-W, Fang S-Q, Ge G-B (2021) Discovery and characterization of the biflavones from Ginkgo biloba as highly specific and potent inhihibitors against human carboxylesterase 2. Front Pharmacol 12:655659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Bate C, Tayebi M, Williams A (2008) Ginkgolides protect against amyloid-β1-42-mediated synapse damage in vitro. Mol Neurodegener 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  383. Wang T, Bai S, Wang W, Chen Z, Chen J, Liang Z, Qi X, Shen H, Xie P (2020) Diterpene ginkgolides exert an antidepressant effect through the NT3-TrkA and Ras-MAPK pathways. Drug Des Devel Ther 14:1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Chatterjee SS, Kondratskaya EL, Krishtal OA (2003) Structure-activity studies with Ginkgo biloba extract constituents as receptor-gated chloride channel blockers and modulators. Pharmacopsychiatry 36:68

    Article  Google Scholar 

  385. Chandrasekran K, Mehrabian Z, Spinnewyn B, Chinopoulos C, Drieu K, Fiskum G (2002) Bilobalide, a component of the Ginkgo biloba extract (EGb 761), protects against neuronal death in global brain ischemia and in glutamate-induced excitotoxicity. Cell Mol Biol 48:663

    Google Scholar 

  386. Brüggemann P, Sória MG, Brandes-Schramm J, Mazurek B (2021) The influence of depression, anxiety, and cognition on the treatment effects of Ginkgo biloba extract EGb 761® in patients with tinnitus and dementia: a mediation analysis. J Clin Med 10:3151

    Article  PubMed  PubMed Central  Google Scholar 

  387. Lemon JA, Boreham DR, Rollo CD (2003) A dietary supplement abolishes age-related cognitive decline in transgenic mice expressing elevated free radical processes. Exp Biol Med 228:800

    Article  CAS  Google Scholar 

  388. Christen Y (2004) Ginkgo biloba and neurogenerative disorders. Front Biosci 9:3091

    Article  CAS  PubMed  Google Scholar 

  389. Rai GS, Shovlin C, Wesnes KA (1991) A double-blind, placebo controlled study of Ginkgo biloba extract (‘Tanakan’) in elderly outpatients with mild to moderate memory impairment. Curr Med Res Opin 12:350

    Article  CAS  PubMed  Google Scholar 

  390. Laakmann G, Dienel A, Kieser M (1998) Clinical significance of hyperforin for the efficacy of Hypericum extracts on depressive disorders of different severities. Phytomedicine 5:435

    Article  CAS  PubMed  Google Scholar 

  391. Tanaka N, Takaishi Y, Shikishima Y, Nakanishi Y, Bastow K, Lee K-H, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2004) Prenylated benzophenones and xanthones from Hypericum scabrum. J Nat Prod 67:1870

    Article  CAS  PubMed  Google Scholar 

  392. Winkelmann K, Heilmann J, Zerbe O, Rali T, Sticher O (2001) Further prenylated bi- and tricyclic phloroglucinol derivatives from Hypericum papuanum. Helv Chim Acta 84:3380

    Article  CAS  Google Scholar 

  393. Hashida W, Tanaka N, Kashiwada Y, Sekiya M, Ikeshiro Y, Takaishi Y (2008) Tomoenones A-H, cytotoxic phloroglucinol derivatives from Hypericum ascyron. Phytochemistry 69:2225

    Article  CAS  PubMed  Google Scholar 

  394. Chen X-Q, Li Y, Li K-Z, Peng L-Y, He J, Wang K, Pan Z-H, Cheng X, Li M-M, Zhao Q-S, Xu G (2011) Spirocyclic acylphloroglucinol derivatives from Hypericum beanii. Chem Pharm Bull 59:1250

    Article  CAS  Google Scholar 

  395. Winkelmann K, San M, Kypriotakis Z, Skaltsa H, Bosilij B, Heilmann J (2003) Antibacterial and cytotoxic activity of prenylated bicyclic acylphloroglucinol derivatives from Hypericum amblycalyx. Z Naturforsch C J Biosci 58:527

    Article  CAS  PubMed  Google Scholar 

  396. Winkelmann K, Heilmann J, Zerbe O, Rali T, Sticher O (2000) New phloroglucinol derviatives from Hypericum papuanum. J Nat Prod 63:104

    Article  CAS  PubMed  Google Scholar 

  397. Rocha L, Marston A, Potterat O, Kaplan MAC, Hostettmann K (1996) More phloroglucinols from Hypericum brasiliense. Phytochemistry 42:185

    Article  CAS  Google Scholar 

  398. Mamemura T, Tanaka N, Shibazaki A, Gonoi T, Kobayashi J (2011) Yojironins A-D meroterpenoids and prenylated acylphloroglucinols from Hypericum yojiroanum. Tetrahedron Lett 52:3575

    Article  CAS  Google Scholar 

  399. Athanasas K, Magiatis P, Fokialakis N, Skaltsounis A-L, Pratsinis H, Kletsas D (2004) Hyperjovinols A and B: two new phloroglucinol derivatives from Hypericum jovis with antioxidant activity in cell cultures. J Nat Prod 67:973

    Article  CAS  PubMed  Google Scholar 

  400. Bernardi APM, Ferraz ABF, Albring DV, Bordignon SAL, Schripsema J, Bridi R, Dutra-Filho CS, Henriques AT, Lino von Poser G (2005) Benzophenones from Hypericum carinatum. J Nat Prod 68:784

    Article  CAS  PubMed  Google Scholar 

  401. Philipp M, Linde K, Kohnen R, Hiller K-O, Berner M (1999) Hypericum extract versus imipramine or placebo in patients with moderate depression: randomised multicentre study of treatment for eight weeks. Br Med J 319:1534

    Article  CAS  Google Scholar 

  402. Shim YY, Gui B, Arnison PG, Wang Y, Reaney MJT (2014) Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: a review. Trends Food Sci Technol 38:5

    Google Scholar 

  403. Wu H, Kelley CJ, Pino-Figueroa A, Vu HD, Maher TJ (2013) Macamides and their synthetic analogs: evalutation of in vitro FAAH inhibition. Bioorg Med Chem 21:5188

    Article  CAS  PubMed  Google Scholar 

  404. Hajdu Z, Nicolussi S, Rau M, Lorántfy L, Forgo P, Hohmann J, Csupor D, Gertsch J (2014) Identification of endocannabinoid system-modulating N-alkylamides from Heliopsis helianthoides var. scabra and Lepidium meyenii. J Nat Prod 77:1663

    Google Scholar 

  405. Zhou M, Ma H-Y, Liu Z-H, Yang G-Y, Du G, Ye Y-Q, Li G-P, Hu Q-F (2017) (+)-Meyeniins A-C, novel hexahydroimidazo[1,5-c]thiazole derivatives from the tubers of Lepidium meyenii: complete structural elucidation by biomimetic synthesis and racemic crystallization. J Agric Food Chem 65:1887

    Article  CAS  PubMed  Google Scholar 

  406. Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66:1101

    Article  CAS  PubMed  Google Scholar 

  407. Gonzales GF, Vasquez V, Rodriguez D, Maldonado C, Mormontoy J, Portella J, Pajuelo M, Villegas L, Gasco M (2007) Effect of two different extracts of red maca in male rats with testosterone-induced prostatic hyperplasia. Asian J Androl 9:245

    Article  CAS  PubMed  Google Scholar 

  408. Pino-Figeroa A, Nguyen D, Maher TJ (2010) Neuroprotective effects of Lepidium meyenii (Maca). Ann NY Acad Sci 1199:77

    Article  Google Scholar 

  409. Imran M, Ahmad N, Anjum FM, Khan MK, Mushtaq Z, Nadeem M, Hussain S (2015) Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutr J 14:71

    Article  PubMed  PubMed Central  Google Scholar 

  410. Rom S, Zuluaga-Ramirez V, Reichenbach NL, Erickson MA, Winfield M, Gajghate S, Christofidou-Solomidou M, Jordan-Sciutto KL, Persidsky Y (2018) Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation. J Neuroinflammation 15:25

    Article  PubMed  PubMed Central  Google Scholar 

  411. Kaithwas G, Majumdar DK (2010) Evaluation of antiulcer and antisecretory potential of Linum usitatissimum fixed oil and possible mechanism of action. Inflammopharmacology 18:137

    Article  CAS  PubMed  Google Scholar 

  412. Kezimana P, Dmitriev AA, Kudryavtseva AV, Romanova EV, Melnikova NV (2018) Secoisolariciresinol diglucoside of flaxseed and its metabolites: biosynthesis and potential for nutraceuticals. Front Genet 9:641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Petroff BK, Khan QJ, Sharma P, Setchell KDR, Zhao X, Phillips TA, Metheny T, Hughes JR, Yeh H-W, Johnson KA (2010) Reduction in Ki-67 in benign breast tissue of high-risk women with the lignan secoisolariciresinol diglycoside. Cancer Prev Res 3:1342

    Article  CAS  Google Scholar 

  414. Zhang W, Wang X, Liu Y, Tian H, Flickinger B, Empie MW, Sun SZ (2008) Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. Br J Nutr 99:1301

    Article  CAS  PubMed  Google Scholar 

  415. Li X-M (2007) Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol 40:461

    Article  CAS  PubMed  Google Scholar 

  416. Niu A-J, Wu J-M, Yu D-H, Wang R (2008) Protective effect of Lycium barbarum polysaccharides on oxidative damage in skeletal muscle of exhaustive exercise rats. Int J Biol Macromol 42:447

    Article  CAS  PubMed  Google Scholar 

  417. Zhang XR, Zhou WX, Zhang YX, Qi CH, Yan H, Wang ZF, Wang B (2011) Macrophages, rather than T and B cells are principal immunostimulatory target cells of Lycium barbarum L. polysaccharide LBPF4-OL. J Ethnopharmacol 136:465

    Google Scholar 

  418. Zhang X-R, Qi C-H, Cheng J-P, Liu G, Huang L-J, Wang Z-F, Zhou W-X, Zhang Y-X (2014) Lycium barbarum polysaccharide LBPF4-OL may be a new toll-like receptor 4/MD2-MAPK signaling pathway activator and inducer. Int Immunopharmacol 19:132

    Article  CAS  PubMed  Google Scholar 

  419. Shen L, Du G (2012) Lycium barbarum polysaccharide stimulates proliferation of MCF-7 cells by the ERK pathway. Life Sci 91:353

    Article  CAS  PubMed  Google Scholar 

  420. Zhu C-P, Zhang S-H (2012) Lycium barbarum polysaccharide inhibits the proliferation of HeLa cells by inducing apoptosis. J Sci Food Agric 93:149

    Article  PubMed  Google Scholar 

  421. Luo Q, Li Z, Yan J, Zhu F, Xu R-J, Cai Y-Z (2009) Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer. J Med Food 12:695

    Article  CAS  PubMed  Google Scholar 

  422. Chen W, Cheng X, Chen J, Yi X, Nie D, Sun X, Qin J, Tian M, Jin G, Zhang X (2014) Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS One 9:e88076

    Article  PubMed  PubMed Central  Google Scholar 

  423. Paula de Oliviera A, Santin JR, Lemos M, Klein Júnior LC, García Couto A, Meyre da Silva Bittencourt C, Cechinel Filho V, Faloni de Andrade S (2011) Gastroprotective activity of methanol extract and marrubiin obtained from leaves of Marrubium vulgare L. (Lamiaceae). J Pharm Pharmacol 63:1230

    Google Scholar 

  424. Rhallab Said Chakir A, Elbadaoui K, Imolek Alaoui T (2015) Antidiabetic activities of methanolic extracts of Marrubium vulgare leaves in rats. Int J Pharm Phytopharmacol Res 4:258

    Google Scholar 

  425. Elmhdwi MF (2014) Hypoglycemic effects of Marrubium vulgare (Rubia) in experimentally induced autoimmune diabetes mellitus. Int Res J Biochem Bioinform 4:42

    Google Scholar 

  426. Singh O, Khanam Z, Misra N, Srivastava MK (2011) Chamomile (Matricaria chamomilla L.): an overview. Pharmacogn Rev 5:82

    Google Scholar 

  427. Hajjaj G, Bounihi A, Tajani M, Cherrah Y, Zellou A (2014) In vivo analgesic activity of essential oil and aqueous extract of Matricaria chamomilla L. (Asteraceae). World J Pharm Pharm Sci 3:1

    Google Scholar 

  428. Della Loggia R, Carle R, Sosa S, Tubaro A (1990) Evaluation of the anti-inflammatory activity of chamomile preparations. Planta Med 56:657

    Google Scholar 

  429. Rocha NFM, Rios ERV, Carvalho AMR, Cerqueira GS, Lopes ADA, Leal LKAM, Dias ML, Pergentino de Sousa D, Florenço de Sousa FC (2011) Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn-Schmeideberg’s Arch Pharmacol 384:525

    Article  CAS  PubMed  Google Scholar 

  430. Flemming M, Kraus B, Rascle A, Jürgenliemk G, Fuchs S, Fürst R, Heilmann J (2015) Revisited anti-inflammatory activity of matricine in vitro: comparison with chamazulene. Fitoterapia 106:122

    Article  CAS  PubMed  Google Scholar 

  431. Maschi O, Cero ED, Galli GV, Caruso D, Bosisio E, Dell’Agli M (2008) Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L. J Agric Food Chem 56:5015

    Article  CAS  PubMed  Google Scholar 

  432. Amsterdam JD, Shults J, Soeller I, Mao JJ, Rockwell K, Newberg AB (2012) Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Altern Ther Health Med 18:44

    PubMed  PubMed Central  Google Scholar 

  433. Han XH, Hong SS, Hwang JS, Lee MK, Hwang BY, Ro JS (2007) Monoamine oxidase inhibitory components from Cayratia japonica. Arch Pharm Res 30:13

    Article  CAS  PubMed  Google Scholar 

  434. Li J, Wang YQ, Jin H, Xu XF, Xiang CP (2010) Characterization of antioxidant polysaccarides in bitter gourd (Momordica charantia L.) cultivars. J Food Agric Environ 8:117

    Google Scholar 

  435. Gong J, Sun F, Li Y, Zhou X, Duan Z, Duan F, Zhao L, Chen H, Qi S, Shen J (2015) Momordica charantia polysaccharides could protect against cerebral ischemia/reperfusion injury through inhibiting oxidative stress mediated c-Jun N-terminal kinase 3 signaling pathway. Neuropharmacology 91:123

    Article  CAS  PubMed  Google Scholar 

  436. Chen HM, Li HX, Kan GS, Ren DM (2012) Correlation study between antioxidant activity and lowering blood glucose of momordica polysaccharide. Sci Technol Food Ind 18:349

    Google Scholar 

  437. Mishra A, Gautam S, Pal S, Mishra A, Rawat A, Maurya R, Srivastava AK (2015) Effect of Momordica charantia fruits on streptozotocin-induced diabetes mellitus and its associated complications. Int J Pharm Pharm Sci 7:356

    Google Scholar 

  438. Wu LW, Ke LJ, Huang XN, Liu ST, Chen H, Rao PF (2006) Separation and characterization of the active ingredients of Momordica charantia L. and their protective and repairing effect on HIT-T15 cells damaged by alloxan in vitro. J Chin Inst Food Sci Technol 6:24

    Google Scholar 

  439. Li ZT, Zhang J, Xie J, Sun RG (2013) The inhibition effect of two different Momordica charantia polysaccharides on the proliferation of human leukemia cell in vitro. J Shaanxi Normal Univ 41:76

    Google Scholar 

  440. Guan L (2012) Synthesis and anti-tumor activities of sulphated polysaccharide obtained from Momordica charantia. Nat Prod Res 26:1303

    Article  CAS  PubMed  Google Scholar 

  441. Deng Y-Y, Yi Y, Zhang L-F, Zhang R-F, Zhang Y, Wei Z-C, Tang X-J, Zhang M-W (2014) Immunomodulatory activity and partial characterisation of polysaccharides from Momordica charantia. Molecules 19:13432

    Article  PubMed  PubMed Central  Google Scholar 

  442. Razavi BM, Hosseinzadeh H (2014) A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 37:1031

    Google Scholar 

  443. Haq A, Abdullatif M, Lobo PI, Khabar KSA, Sheth KV, Al-Sedairy ST (1995) Nigella sativa: effect on human lymphocytes and polymorphonuclear leukocyte phagocytic activity. Immunopharmacology 30:147

    Article  CAS  PubMed  Google Scholar 

  444. Haq A, Lobo PI, Al-Tufail M, Rama NR, Al-Sedairy ST (1999) Immunomodulatory effect of Nigella sativa proteins fractionated by ion exchange chromatography. Int J Immunopharmacol 21:283

    Article  CAS  PubMed  Google Scholar 

  445. Mansour MA, Nagi MN, El-Khatib AS, Al-Bekairi AM (2002) Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation, and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct 20:143

    Article  CAS  PubMed  Google Scholar 

  446. Awad AS, Kamel R, Sherief M-AE (2011) Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischemia-reperfusion in rats. J Pharm Pharmacol 63:1037

    Article  CAS  PubMed  Google Scholar 

  447. Bamosa AO, Kaatabi H, Lebda FM, Al Elq A-M, Al-Sultan A (2010) Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian J Physiol Pharmacol 54:344

    PubMed  Google Scholar 

  448. Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ (2010) Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes 2:256

    Article  CAS  PubMed  Google Scholar 

  449. Ahmad S, Beg ZH (2013) Hypolipidemic and antioxidant activities of thymoquinone and limonene in atherogenic suspension fed rats. Food Chem 138:1116

    Article  CAS  PubMed  Google Scholar 

  450. El Tahir KEH, Al-Ajmi MF, Al-Bekairi AM (2003) Some cardiovascular effects of the dethymoquinonated Nigella sativa volatile oil and its major components α-pinene and p-cymene in rats. Saudi Pharm J 11:104

    Google Scholar 

  451. Ghatak SB, Panchal SS (2012) Anti-diabetic activity of oryzanol and its relationship with the antioxidant property. Int J Diabetes Dev Ctries 32:185

    Article  CAS  Google Scholar 

  452. Min S-W, Ryu S-N, Kim D-H (2010) Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, cyanidin, and protocatechuic acid. Int Immunopharmacol 10:959

    Article  CAS  PubMed  Google Scholar 

  453. Wunjuntuk K, Kettawan A, Rungruang T, Charoenkiatkul S (2016) Anti-fibrotic and anti-inflammatory effects of parboiled germinated brown rice (Oryza sativa ‘KDML 105’) in rats with induced liver fibrosis. J Funct Foods 26:363

    Article  CAS  Google Scholar 

  454. Accinni R, Rosina M, Bamonti F, Noce CD, Tonini A, Bernacchi F, Campolo J, Caruso R, Novembrino C, Ghersi L, Lonati S, Grossi S, Ippolito S, Lorenzano E, Ciani A, Gorini M (2006) Effects of combined dietary supplementation of oxidative and inflammatory status in dyslipidemic subjects. Nutr Metab Cardiovasc Dis 16:121

    Article  CAS  PubMed  Google Scholar 

  455. Ismail N, Ismail M, Imam MU, Szmi NH, Fathy SF, Foo JB, Bakar MFA (2014) Mechanistic basis for protection of differentiated SH-SY5Y cells by oryzanol-rich fraction against hydrogen peroxide-induced neurotoxicity. BMC Complement Altern Med 14:467

    Article  PubMed  PubMed Central  Google Scholar 

  456. Chotimarkon C, Ushio H (2008) The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse. Phytomedicine 15:951

    Article  Google Scholar 

  457. Stefanutti C, Mazza F, Mesce D, Morozzi C, Di Giacomo S, Vitale M, Pergolini M (2017) Monascus purpureus for statin and ezetimibe intolerant heterozygous familial hypercholesterolaemia patients: a clinical study. Atheroscler Suppl 30:86

    Article  PubMed  Google Scholar 

  458. Hong MY, Seeram NP, Zhang Y, Heber D (2008) Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J Nutr Biochem 19:448

    Article  CAS  PubMed  Google Scholar 

  459. Zheng Y, Zhang Y, Chen D, Chen H, Lin L, Zheng C, Guo Y (2016) Monascus pigment rubropunctatin: a potential dual agent for cancer chemotherapy and phototherapy. J Agric Food Chem 64:2541

    Article  CAS  PubMed  Google Scholar 

  460. Lee C-L, Wen J-Y, Hsu Y-W, Pan T-M (2018) The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver. J Microbiol Immunol Infect 51:27

    Article  PubMed  Google Scholar 

  461. Shi Y-C, Pan T-M, Liao VH-C (2016) Monascin from Monascus-fermented products reduces oxidative stress and amyloid-β toxicity via DAF-16/FOXO in Caenorhabditis elegans. J Agric Food Chem 64:7114

    Article  CAS  PubMed  Google Scholar 

  462. Wang J, Wang G, Yi J, Xu Y, Duan S, Li T, Sun X-G, Dong L (2017) The effect of monascin on hematoma clearance and edema after intracerebral hemorrhage in rats. Brain Res Bull 134:24

    Article  CAS  PubMed  Google Scholar 

  463. Yokozawa T, Kobayashi T, Oura H, Kawashima Y (1985) Hyperlipidemia-improving effects of ginsenoside Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull 33:3893

    Article  CAS  Google Scholar 

  464. Lee K-T, Jung TW, Lee H-J, Kim S-G, Shin Y-S, Whang W-K (2011) The antidiabetic effect of ginsenoside Rb2 via activation of AMPK. Arch Pharm Res 34:1201

    Article  CAS  PubMed  Google Scholar 

  465. Li X, Chu S, Lin M, Gao Y, Liu Y, Yang S, Zhou X, Zhang Y, Hu Y, Wang H, Chen N (2020) Anticancer property of ginsenoside Rh2 from ginseng. Eur J Med Chem 203:112627

    Article  CAS  PubMed  Google Scholar 

  466. Liu Z, Liu T, Li W, Li J, Wang C, Zhang K (2021) Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 48:2639

    Article  CAS  PubMed  Google Scholar 

  467. Zhou T-T, Zu G, Wang X, Zhang X-G, Li S, Liang Z-H, Zhao J (2015) Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of Parkinson’s disease. Int Immunopharmacol 29:334

    Article  CAS  PubMed  Google Scholar 

  468. Brunetti P, Lo Faro AF (2020) Pharmacology of herbal sexual enhancers: a review of psychiatric and neurological adverse effects. Pharmaceuticals 13:309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  469. Reid K, Surridge DH, Morales A, Condra M, Harris C, Owen J, Fenemore J (1987) Double-blind trial of yohimbine in treatment of psychogenic impotence. Lancet 330:421

    Article  Google Scholar 

  470. Teloken C, Rhoden EL, Sogari P, Dambros M, Souto CAV (1998) Therapeutic effects of high dose yohimbine hydrochloride on organic erectile dysfunction. J Urol 159:122

    Article  CAS  PubMed  Google Scholar 

  471. Charlebois D (2007) Elderberry as a medicinal plant. In: Janick J, Whipkey A (eds) Issues in new crops and new uses. ASHS Press, Alexandria, VA, p 284

    Google Scholar 

  472. Młynarczyk K, Walkowiak-Tomczak D, Łysiak GP (2018) Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. J Funct Foods 40:377

    Google Scholar 

  473. Abdramanov A, Massanyi P, Sarsembayeva N, Altay U, Alimov J, Tvrdá E (2017) The in vitro effect of elderberry (Sambucus nigra) extract on the activity and oxidative profile of bovine spermatozoa. J Microbiol Biotechnol Food Sci 6:1319

    Article  CAS  Google Scholar 

  474. Santin JR, Benvenutti L, Broering MF, Nunes R, Goldoni FC, Patel YBK, de Souza JA, Kopp MAT, de Souza P, da Silva RCV, Pastor MVD, de Souza AB, Testoni LD, Couto AG, Bresolin TMB, Quintão NLM (2022) Sambucus nigra: a traditional medicine effective in reducing inflammation in mice. J Ethnopharmacol 283:114736

    Article  CAS  PubMed  Google Scholar 

  475. Castillo-Maldonado I, Moreno-Altamirano MMB, Serrano-Gallardo LB (2017) Anti-dengue serotype-2 activity effect of Sambucus nigra leaves- and flowers-derived compounds. Virol Res Rev 1:1

    Article  Google Scholar 

  476. Roschek B, Fink RC, McMichael MD, Li D, Alberte RS (2009) Elderberry flavonoids bind to and prevent H1N1 infection in vitro. Phytochemistry 70:1255

    Article  CAS  PubMed  Google Scholar 

  477. Boroduske A, Jekabsons K, Riekstina U, Muceniece R, Rostoks N, Nakurte I (2021) Wild Sambucus nigra L. From north-east edge of the species range: a valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro. Ind Crops Prod 165:113438

    Google Scholar 

  478. Harnett J, Oakes K, Carè J, Leach M, Brown D, Cramer H, Pinder T-A, Steel A, Anheyer D (2020) The effects of Sambucus nigra berry on acute respiratory viral infections: a rapid review of clinical studies. Adv Integr Med 7:240

    Article  PubMed  PubMed Central  Google Scholar 

  479. Silveira D, Prieto-Garcia JM, Boylan F, Estrada O, Fonseca-Bazzo YM, Jamal CM, Magalhães PO, Pereira EO, Tomczyk M, Heinrich M (2020) COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 11:581840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. da Silva RFR, Barreira JCM, Heleno SA, Barros L, Calhelha RC, Ferreira ICFR (2019) Anthocyanin profile of elderberry juice: a natural-based bioactive colouring ingredient with potential food application. Molecules 24:2359

    Article  PubMed  PubMed Central  Google Scholar 

  481. Anderson ML (2005) A preliminary investigation of the enzymatic inhibition of 5-alpha-reductase and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and saw palmetto lipid extract in vitro. J Herb Pharmacother 5:17

    Article  CAS  PubMed  Google Scholar 

  482. Raynaud J-P, Cousse H, Martin P-M (2002) Inhibition of type 1 and type 2 5α-reductase activity by free fatty acids, active ingredients of Permixon®. J Steroid Biochem Mol Biol 82:233

    Article  CAS  PubMed  Google Scholar 

  483. Abe M, Ito Y, Oyunzul L, Oki-Fujino T, Yamada S (2009) Pharmacologically relevant receptor binding characteristics and 5α-reductase inhibitory activity of free fatty acids contained in saw palmetto extract. Biol Pharm Bull 32:646

    Article  CAS  PubMed  Google Scholar 

  484. Silvestri I, Cattarino S, Agilanó A, Nicolazzo C, Scarpa S, Salciccia S, Frati L, Gentile V, Sciarra A (2013) Effect of Serenoa repens (Permixon®) on the expression of inflammation-related genes: analysis in primary cell cultures of human prostate carcinoma. J Inflamm 10:11

    Article  Google Scholar 

  485. Latil A, Pétrissans M-T, Rouquet J, Robert G, de la Tialle A (2015) Effects of hexanic extract of Serenoa repens (Permixon®160 mg) on inflammation biomarkers in the treatment of lower urinary tract symptoms related to benign prostatic hyperplasia. Prostate 75:1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  486. Vela-Navarrete R, Escribano-Burgos M, Farré AL, García-Cardoso J, Manzarbeitia F, Carrasco C (2005) Serenoa repens treatment modifies Bax/Bcl-2 index expression and caspase-3 activity in prostatic tissue from patients with benign prostatic hyperplasia. J Urol 173:507

    Article  PubMed  Google Scholar 

  487. Klippel KF, Hiltl DM, Schipp B (1997) A multicentric, placebo-controlled, double-blind clinical trial of β-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. Br J Urol 80:427

    Article  CAS  PubMed  Google Scholar 

  488. Berges RR, Windeler J, Trampisch HJ, Senge T (1995) Randomised, placebo-controlled, double-blind clinical trial of β-sitosterol in patients with benign prostatic hyperplasia. Lancet 345:1529

    Article  CAS  PubMed  Google Scholar 

  489. Carbin BE, Larsson B, Lindahl O (1990) Treatment of benign prostatic hyperplasia with phytosterols. Br J Urol 66:639

    Article  CAS  PubMed  Google Scholar 

  490. Federico A, Dallio M, Loguercio C (2017) Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules 22:191

    Article  PubMed  PubMed Central  Google Scholar 

  491. Marmouzi I, Bouyahya A, Ezzat SM, Jemli ME, Kharbach M (2021) The food plant Silybum marianum (L.) Gaertn.: phytochemistry, ethnopharmacology and clinical evidence. J Ethnopharmacol 265:113303

    Google Scholar 

  492. Ghaffari AR, Noshad H, Ostadi A, Ghojazadeh M, Asadi P (2011) The effects of milk thistle on hepatic fibrosis due to methotrexate in rat. Hepat Mon 11:464

    PubMed  PubMed Central  Google Scholar 

  493. Raškovic A, Stilinović N, Kolarović J, Vasović V, Vukmirović S, Mikov M (2011) The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats. Molecules 16:8601

    Article  PubMed  PubMed Central  Google Scholar 

  494. Vessal G, Akmali M, Najafi P, Moien MR, Sagheb MM (2010) Silymarin and milk thistle extract may prevent the progression of diabetic nephropathy in streptozotocin-induced diabetic rats. Ren Fail 32:733

    Article  CAS  PubMed  Google Scholar 

  495. Wang X, Zhang Z, Wu S-C (2020) Health benefits of Silybum marianum: phytochemistry, pharmacology, and applications. J Agric Food Chem 68:11644

    Article  CAS  PubMed  Google Scholar 

  496. Mina PR, Kumar Y, Verma AK, Khan F, Tandon S, Pal A, Darokar MP (2020) Silymarin, a polyphenolic flavanoid impede Plasmodium falciparum growth through interaction with heme. Nat Prod Res 34:2647

    Article  CAS  PubMed  Google Scholar 

  497. Camini FC, da Silva TF, da Silva Caetano CC, Almeida LT, Ferraz AC, Vitoreti VMA, de Mello SB, de Queiroz SS, de Magalhães JC, de Brito Magalhães CL (2018) Antiviral activity of silymarin against Mayaro virus and protective effect in virus-induced oxidative stress. Antiviral Res 158:8

    Article  CAS  PubMed  Google Scholar 

  498. Bosch-Barrera J, Queralt B, Menendez JA (2017) Targeting STAT3 with silibinin to improve cancer therapeutics. Cancer Treat Rev 58:61

    Article  CAS  PubMed  Google Scholar 

  499. Loguercio C, Festi D (2011) Silybin and the liver: from basic research to clinical practice. World J Gastroenterol 17:2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  500. Dastpeyman M, Motamed N, Azadmanesh K, Mostafavi E, Kia V, Jahanian-Najafabadi A, Shokrgozar MA (2012) Inhibition of silibinin on migration and adhesion capacity of human highly metastatic breast cancer cell line, MDA-MB-231, by evaluation of β1-integrin and downstream molecules, Cdc42, Raf-1 and D4GDI. Med Oncol 29:2512

    Article  CAS  PubMed  Google Scholar 

  501. Song X, Liu B, Cui L, Zhou B, Liu W, Xu F, Hayashi T, Hattori S, Ushiki-Kaku Y, Tashiro S-I, Ikejima T (2017) Silibinin ameliorates anxiety/depression-like behaviors in amyloid β-treated rats by upregulating BDNF/TrkB pathway and attenuating autophagy in hippocampus. Physiol Behav 179:487

    Article  CAS  PubMed  Google Scholar 

  502. Shenoy A, Buttar HS, Dicholkar P, Kaur G, Chintamaneni M (2022) Role of nutraceuticals, functional foods, and spices in the management of metabolic syndrome and related disorders. In: Singh RB, Watanabe S, Isaza AA (eds) Functional foods and nutraceuticals in metabolic and non-communicable diseases. Academic Press, London, p 583

    Chapter  Google Scholar 

  503. Stefanowicz-Hajduk J, Król-Kogus B, Sparzak-Stefanowska B, Kimel K, Ochocka JR, Krauze-Baranowska M (2021) Cytotoxic activity of standardized extracts, a fraction, and individual secondary metabolites from fenugreek seeds against SKOV-3, HeLa and MOLT-4 cell lines. Pharm Biol 59:424

    Article  CAS  PubMed  Google Scholar 

  504. Hibasami H, Moteki H, Ishikawa K, Katsuzaki H, Imai K, Yoshioka K, Ishii Y, Komiya T (2003) Protodioscin isolated from fenugreek (Trigonella foenum-graecum L.) induces cell death and morphological change indicative of apoptosis in leukemic cell line H-60, but not in gastric cancer cell line KATO III. Int J Mol Med 11:23

    Google Scholar 

  505. Bachran C, Bachran S, Sutherland M, Bachran D, Fuchs H (2014) Preclinical studies of saponins for tumor therapy. In: Atta-ur-Rahman, Choudhary MI, Perry G (eds) Recent advances in medicinal chemistry. Elsevier, Amsterdam, p 272

    Google Scholar 

  506. Jesus M, Martins APJ, Gallardo E, Silvestre S (2016) Diosgenin: recent highlights on pharmacology and analytical methodology. J Anal Methods Chem 2016:4156293

    Article  PubMed  PubMed Central  Google Scholar 

  507. Haeri MR, Limaki HK, White CJB, White KN (2012) Non-insulin dependent anti-diabetic activity of (2S,3R,4S)-4-hydroxyisoleucine of fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats. Phytomedicine 19:571

    Article  CAS  PubMed  Google Scholar 

  508. Ahmadiani A, Javan M, Semnanian S, Barat E, Kamalinejad M (2001) Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. J Ethnopharmacol 75:283

    Article  CAS  PubMed  Google Scholar 

  509. Kaur G, Mukundan S, Wani V, Kumar MS (2015) Nutraceuticals in the management and prevention of metabolic syndrome. Austin J Pharmacol Ther 3:1063

    Google Scholar 

  510. Trask LE, Chaidarun SS, Platt D, Parkin CG (2014) Treatment with novel galactomannan derivative reduces 2-hour postprandial glucose excursions in individuals with type 2 diabetes treated with oral medications and/or insulin. J Diabetes Sci Technol 8:1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  511. Reeder C, Legrand A, O’Connor-Von SK (2013) The effect of fenugreek on milk production and prolactin levels in mothers of preterm infants. Clin Lact 4:159

    Article  Google Scholar 

  512. Dao CA, Patel KD, Neto CC (2012) Phytochemicals from the fruit and foliage of cranberry (Vaccinium macrocarpon)—potential benefits for human health. In: Patil BS, Jayaprakasha GK, Murthy KNC, Seram NP (eds), Emerging trends in dietary components for preventing and combating disease. American Chemical Society Books, Washington, DC. Symposium series, vol 1093, p 79

    Google Scholar 

  513. He X, Liu RH (2006) Cranberry phytochemicals: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 54:7069

    Article  CAS  PubMed  Google Scholar 

  514. Xie L, Xie J, Xu Y, Chen W (2020) Discovery of anthocyanins from cranberry extract as pancreatic lipase inhibitors using a combined approach of ultrafiltration, molecular simulation and spectroscopy. Food Funct 11:8527

    Article  CAS  PubMed  Google Scholar 

  515. Howell AB, Reed JD, Krueger CG, Winterbottom R, Cunningham DG, Leahy M (2005) A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66:2281

    Article  CAS  PubMed  Google Scholar 

  516. Lavigne JP, Bourg G, Combescure C, Botto H, Sotto A (2008) In-vitro and in-vivo evidence of dose-dependent decrease of uropathogenic Escherichia coli virulence after consumption of commercial Vaccinium macrocarpon (cranberry) capsules. Clin Microbiol Infect 14:350

    Article  PubMed  PubMed Central  Google Scholar 

  517. Neto CC (2007) Cranberry and its phytochemicals: a review of in vitro anticancer studies. J Nutr 137:186S

    Article  CAS  PubMed  Google Scholar 

  518. Déziel B, MacPhee J, Patel K, Catalli A, Kulka M, Neto C, Gottschall-Pass K, Hurta R (2012) American cranberry (Vaccinium macrocarpon) extract affects human prostate cancer cell growth via cell cycle arrest by modulating expression of cell cycle regulators. Food Funct 3:556

    Article  PubMed  Google Scholar 

  519. Skemiene K, Pampuscenko K, Rekuviene E, Borutaite V (2020) Protective effects of anthocyanins against brain ischemic damage. J Bioenerg Biomembr 52:71

    Article  CAS  PubMed  Google Scholar 

  520. Liang Z, Liang H, Guo Y, Yang D (2021) Cyanidin 3-O-galactoside: a natural compound with multiple health benefits. Int J Mol Sci 22:2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  521. Wen H, Cui H, Tian H, Zhang X, Ma L, Ramassamy C, Li J (2020) Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 10:63

    Article  PubMed  PubMed Central  Google Scholar 

  522. Chen H-W, Wei B-J, He X-H, Liu Y, Wang J (2015) Chemical components and cardiovascular activities of Valeriana spp. Evid Based Complement Altern Med 2015:947619

    Article  Google Scholar 

  523. Lunz K, Stappen I (2021) Back to the roots-an overview of the chemical composition and bioactivity of selected root-essential oils. Molecules 26:3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  524. Taavoni S, Ekbatani N, Kashaniyan M, Haghani H (2011) Effect of valerian on sleep quality in postmenopausal women: a randomized placebo-controlled clinical trial. Menopause 18:951

    Article  PubMed  Google Scholar 

  525. Ahmadi M, Khalil H, Abbasian L, Ghaeli P (2017) Effect of valerian in preventing neuropsychiatric adverse effects of efavirenz in HIV-positive patients: a pilot randomized, placebo-controlled clinical trial. Ann Pharmacother 51:457

    Article  CAS  PubMed  Google Scholar 

  526. Andreatini R, Sartori VA, Seabra MLV, Leite JR (2002) Effect of valepotriates (valerian extract) in generalized anxiety disorder: a randomized placebo-controlled pilot study. Phytother Res 16:650

    Article  CAS  PubMed  Google Scholar 

  527. Maurmann N, Reolon GK, Rech SB, Fett-Neto AG, Roesler R (2011) A valepotriate fraction of Valeriana glechomifolia shows sedative and anxiolytic properties and impairs recognition but not aversive memory in mice. Evid Based Complement Altern Med 2011:720853

    Article  Google Scholar 

  528. Sah SP, Mathela CS, Chopra K (2011) Antidepressant effect of Valeriana wallichii patchouli alcohol chemotype in mice: behavioural and biochemical evidence. J Ethnopharmacol 135:197

    Article  PubMed  Google Scholar 

  529. Zhou X-Z, Kang L, Kang Y, Li L, Xiong S-H (2009) Effect of Valeriana officinalis var. latifolia Miq. on heart rat and arterial blood perssure of rabbit. J Liaoning Univ Tradit Chin Med 11:188

    Google Scholar 

  530. Fields AM, Richards TA, Felton JA, Felton SK, Bayer EZ, Ibrahim IN, Kaye AD (2003) Analysis of responses to valerian root extract in the feline pulmonary vascular bed. J Altern Complement Med 9:909

    Article  PubMed  Google Scholar 

  531. Yang S-H, Chen F, Ma H-M, Wang T (2012) Protection of Valeriana officinalis L. extract preconditioning on ischemia-reperfusion injury in rat hearts in vitro. Med J Wuhan Univ 33:639

    Google Scholar 

  532. Khom S, Baburin I, Timin E, Hohaus A, Trauner G, Kopp B, Hering S (2007) Valerenic acid potentiates and inhibits GABAA receptors: molecular mechanism and subunit specificity. Neuropharmacology 53:178

    Article  CAS  PubMed  Google Scholar 

  533. Shi S-N, Shi J-L, Liu Y, Wang Y-L, Wang C-G, Hou W-H, Guo J-Y (2014) The anxiolytic effects of valtrate in rats involves changes of corticosterone levels. Evid Based Complement Alternat Med 2014:325948

    Article  PubMed  PubMed Central  Google Scholar 

  534. Fernández S, Wasowski C, Paladini AC, Marder M (2004) Sedative and sleep-enhancing properties of linarin, a flavonoid-isolated from Valeriana officinalis. Pharmacol Biochem Behav 77:399

    Article  PubMed  Google Scholar 

  535. Zhang X, Li X, Liu N, Zheng P, Ma L, Guo F, Sun T, Zhou R, Yu J (2019) The anticonvulsant effects of baldrinal on pilocarpine-induced convulsion in adult male mice. Molecules 24:1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  536. Wang Q, Wang C, Zuo Y, Wang Z, Yang B, Kuang H (2012) Compounds from the roots and rhizomes of Valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17:15013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  537. Begum VH, Sadique J (1987) Effect of Withania somnifera on glycosaminoglycan synthesis in carrageenin-induced air pouch granuloma. Biochem Med Metab Biol 38:272

    Article  CAS  PubMed  Google Scholar 

  538. Maitra R, Porter MA, Huang S, Gilmour BP (2009) Inhibition of NFκB by the natural product withaferin A in cellular models of cystic fibrosis inflammation. J Inflamm 6:15

    Article  Google Scholar 

  539. Dhuley JN (1998) Effect of ashwagandha on lipid peroxidation in stress-induced animals. J Ethnopharmacol 60:173

    Article  CAS  PubMed  Google Scholar 

  540. Wube AA, Wenzig E-M, Gibbons S, Asres K, Bauer R, Bucar F (2008) Constituents of the stem bark of Discopodium penninervium and their LTB4 and COX-1 and -2 inhibitory activities. Phytochemistry 69:982

    Article  CAS  PubMed  Google Scholar 

  541. Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S (2000) Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: an experimental study. Phytomedicine 7:463

    Article  CAS  PubMed  Google Scholar 

  542. Dhuley JN (2001) Nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother Res 15:524

    Google Scholar 

  543. Ghosal S, Lal J, Srivastava R, Bhattacharya SK, Upadhyay SN, Jaiswal AK, Chattopadhyay U (1989) Immunomodulatory and CNS effects of sitoindosides IX and X, two new glycowithanolides from Withania somnifera. Phytother Res 3:201

    Article  CAS  Google Scholar 

  544. Bhattacharya SK, Goel RK, Kaur R, Ghosal S (1987) Anti-stress activity of sitoindosides VII and VIII, new acylsterylglucosides from Withania somnifera. Phytother Res 1:32

    Article  CAS  Google Scholar 

  545. Kumar S, Harris RJ, Seal CJ, Okello EJ (2012) An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res 26:113

    Article  PubMed  Google Scholar 

  546. Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Aβ (25–35)-induced neurodegeneration. Eur J Neurosci 23:1417

    Article  PubMed  Google Scholar 

  547. Zhao J, Nakamura N, Hattori M, Kuboyama T, Tohda C, Komatsu K (2002) Withanolide derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull 50:760

    Article  CAS  Google Scholar 

  548. Pandey A, Bani S, Dutt P, Satti NK, Suri KA, Qazi GN (2018) Multifunctional neuroprotective effect of withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 102:211

    Article  CAS  PubMed  Google Scholar 

  549. Singh N, Singh SP, Nath R, Singh DR, Gupta ML, Kohli RP, Bhargava KP (1986) Prevention of urethane-induced lung adenomas by Withania somnifera (L.) Dunal in albino mice. Int J Crude Drug Res 24:90

    Google Scholar 

  550. Mohan R, Hammers H, Bargagna-Mohan P, Zhan X, Herbstritt C, Ruiz A, Zhang L, Hanson A, Conner B, Rougas J (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115

    Article  CAS  PubMed  Google Scholar 

  551. Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125

    Article  CAS  PubMed  Google Scholar 

  552. Cordero CP, Morantes SJ, Páez A, Rincón J, Aristizábal FA (2009) Cytotoxicity of withanolides isolated from Acnistus arborescens. Fitoterapia 80:364

    Article  CAS  PubMed  Google Scholar 

  553. Ortega AMM, Campos MRS (2019) Medicinal plants and their bioactive metabolites in cancer prevention and treatment. In: Campos MRS (ed) Bioactive compounds. Woodhead Publishing, Cambridge, MA, p 85

    Chapter  Google Scholar 

  554. Jin Z, Lee G, Kim S, Park C-S, Park YS, Jin Y-H (2014) Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J Physiol Pharmacol 18:149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  555. Zhang F, Thakur K, Hu F, Zhang J-G, Wei Z-J (2017) Cross-talk between 10-gingerol and its anti-cancerous potential: a recent update. Food Funct 8:2635

    Article  CAS  PubMed  Google Scholar 

  556. Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K (2015) Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One 10:e0126605

    Article  PubMed  PubMed Central  Google Scholar 

  557. Qi LW, Zhang Z, Zhang CF, Anderson S, Liu Q, Yuan CS, Wang CZ (2015) Anti-colon cancer effects of 6-shogaol through G2/M cell cycle arrest by p53/p21-cdc2/cdc25A crosstalk. Am J Chin Med 43:743

    Article  CAS  PubMed  Google Scholar 

  558. Sang S, Hong J, Wu H, Liu J, Yang CS, Pan MH, Badmaev V, Ho CT (2009) Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J Agric Food Chem 57:10645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  559. Lee SH, Cekanova M, Baek SJ (2008) Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 47:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  560. El-Naggar MH, Mira A, Abdel Bar FM, Shimizu K, Amer MM, Badria FA (2017) Synthesis, docking, cytotoxicity, and LTA4H inhibitory activity of new gingerol derivatives as potential colorectal cancer therapy. Bioorg Med Chem 25:1277

    Article  CAS  PubMed  Google Scholar 

  561. Zhang F, Thakur K, Hu F, Zhang J-G, Wei Z-J (2017) 10-Gingerol, a phytochemical derivative from “tongling white ginger”, inhibits cervical cancer: insights into the molecular mechanism and inhibitory targets. J Agric Food Chem 65:2089

    Article  CAS  PubMed  Google Scholar 

  562. Sakulnarmrat K, Srzednicki G, Konczak I (2015) Antioxidant, enzyme inhibitory and antiproliferative activity of polyphenolic-rich fraction of commercial dry ginger powder. Int J Food Sci Technol 50:2229

    Article  CAS  Google Scholar 

  563. Lantz RC, Chen GJ, Sarihan M, Sólyom AM, Jolad SD, Timmermann BN (2007) The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine 14:123

    Article  CAS  PubMed  Google Scholar 

  564. Young HY, Luo YL, Cheng HY, Hsieh WC, Liao JC, Peng WH (2005) Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol 96:207

    Article  CAS  PubMed  Google Scholar 

  565. Nurtjahja-Tjendraputra E, Ammit AJ, Roufogalis BD, Tran VH, Duke CC (2003) Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res 111:259

    Article  CAS  PubMed  Google Scholar 

  566. Thiese MS, Arnold ZC, Walker SD (2015) The misuse and abuse of statistics in biomedical research. Biochem Med 25:5

    Article  Google Scholar 

  567. Khan IA, Smillie T (2012) Implementing a “quality by design” approach to assure the safety and integrity of botanical dietary supplements. J Nat Prod 75:1665

    Article  CAS  PubMed  Google Scholar 

  568. Carcache de Blanco EJ, Kinghorn AD (2020) Botanical dietary products. In: Adejare A (ed) Remington: the science and practice of pharmacy, 23rd edn. Academic, San Diego, p 45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esperanza J. Carcache de Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salinas-Arellano, E.D., Castro-Dionicio, I.Y., Jeyaraj, J.G., Mirtallo Ezzone, N.P., Carcache de Blanco, E.J. (2023). Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Progress in the Chemistry of Organic Natural Products 122. Progress in the Chemistry of Organic Natural Products, vol 122. Springer, Cham. https://doi.org/10.1007/978-3-031-26768-0_1

Download citation

Publish with us

Policies and ethics