Skip to main content

Understanding and Engineering the Pulmonary Vasculature

  • Chapter
  • First Online:
Engineering Translational Models of Lung Homeostasis and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1413))

  • 737 Accesses

Abstract

Blood vessels play essential roles in regulating embryonic organogenesis and adult tissue homeostasis. The inner lining of blood vessels is covered by vascular endothelial cells, which exhibit tissue-specific phenotypes in term of their molecular signature, morphology, and function. The pulmonary microvascular endothelium is continuous and non-fenestrae to ensure stringent barrier function while allowing efficient gas exchange across the alveoli-capillary interface. During respiratory injury repair, pulmonary microvascular endothelial cells secrete unique angiocrine factors and actively participate in the molecular and cellular events mediating alveolar regeneration. Advances in stem cell and organoid engineering are offering new ways to produce vascularized lung tissue models to investigate vascular-parenchymal interactions during lung organogenesis and pathogenesis. Further, technology developments in 3D biomaterial fabrication are enabling construction of vascularized tissues and microdevices with organotypic features at high resolution to recapitulate the air-blood interface. In parallel, whole-lung decellularization produces biomaterial scaffolds with naturally occurring, acellular vascular bed with preserved tissue architecture and complexity. Emerging efforts in combining cells with synthetic or natural biomaterials open vast opportunities for engineering the organotypic pulmonary vasculature to address current limitations in regenerating and repairing damaged lungs and pave the way towards next-generation therapies for pulmonary vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carmeliet, P., Angiogenesis in health and disease. Nature Medicine, 2003. 9(6): p. 653–660.

    Google Scholar 

  2. Weibel, E.R. and D.M. Gomez, Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science, 1962. 137(3530): p. 577–85.

    Google Scholar 

  3. Ochs, M., et al., The number of alveoli in the human lung. Am J Respir Crit Care Med, 2004. 169(1): p. 120–4.

    Google Scholar 

  4. Parera, M.C., et al., Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol, 2005. 288(1): p. L141–9.

    Google Scholar 

  5. Schachtner, S.K., Y. Wang, and H. Scott Baldwin, Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol, 2000. 22(2): p. 157–65.

    Google Scholar 

  6. Thébaud, B. and S.H. Abman, Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med, 2007. 175(10): p. 978–85.

    Google Scholar 

  7. Hall, S.M., et al., Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol, 2000. 23(2): p. 194–203.

    Google Scholar 

  8. Shalaby, F., et al., Failure of blood-Island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995. 376(6535): p. 62–6.

    Google Scholar 

  9. Yamaguchi, T.P., et al., flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development, 1993. 118(2): p. 489–98.

    Google Scholar 

  10. Healy, A.M., et al., VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Dev Dyn, 2000. 219(3): p. 341–52.

    Google Scholar 

  11. Shu, W., et al., Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development, 2002. 129(20): p. 4831–42.

    Google Scholar 

  12. Peng, T., et al., Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor. Nature, 2013. 500(7464): p. 589–92.

    Google Scholar 

  13. Gebb, S.A. and J.M. Shannon, Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn, 2000. 217(2): p. 159–69.

    Google Scholar 

  14. Roberts, A.B. and M.B. Sporn, Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-beta. Am Rev Respir Dis, 1989. 140(4): p. 1126–8.

    Google Scholar 

  15. Cai, J., et al., BMP signaling in vascular diseases. FEBS Lett, 2012. 586(14): p. 1993–2002.

    Google Scholar 

  16. Bellusci, S., et al., Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development, 1997. 124(23): p. 4867–78.

    Google Scholar 

  17. Weaver, M., N.R. Dunn, and B.L. Hogan, Bmp4 and Fgf10 play opposing roles during lung bud morphogenesis. Development, 2000. 127(12): p. 2695–704.

    Google Scholar 

  18. Chen, F., et al., A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest, 2010. 120(6): p. 2040–8.

    Google Scholar 

  19. Goss, A.M., et al., Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol, 2011. 356(2): p. 541–52.

    Google Scholar 

  20. Husain, A.N., N.H. Siddiqui, and J.T. Stocker, Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol, 1998. 29(7): p. 710–7.

    Google Scholar 

  21. McGrath-Morrow, S.A., et al., Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol, 2005. 32(5): p. 420–7.

    Google Scholar 

  22. Thébaud, B., et al., Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation, 2005. 112(16): p. 2477–86.

    Google Scholar 

  23. Miranda, J., et al., Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACD/MPV): A Case Series. Case Reports in Critical Care, 2013. 2013: p. 327250.

    Google Scholar 

  24. Sirkin, W., et al., Alveolar capillary dysplasia: lung biopsy diagnosis, nitric oxide responsiveness, and bronchial generation count. Pediatr Pathol Lab Med, 1997. 17(1): p. 125–32.

    Google Scholar 

  25. Cangiarella, J., et al., Congenital cystic adenomatoid malformation of the lung: insights into the pathogenesis utilizing quantitative analysis of vascular marker CD34 (QBEND-10) and cell proliferation marker MIB-1. Mod Pathol, 1995. 8(9): p. 913–8.

    Google Scholar 

  26. Levin, D.L., Morphologic analysis of the pulmonary vascular bed in congenital left-sided diaphragmatic hernia. J Pediatr, 1978. 92(5): p. 805–9.

    Google Scholar 

  27. Nolan, D.J., et al., Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell, 2013. 26(2): p. 204–19.

    Google Scholar 

  28. Rafii, S., J.M. Butler, and B.S. Ding, Angiocrine functions of organ-specific endothelial cells. Nature, 2016. 529(7586): p. 316–25.

    Google Scholar 

  29. Schildberg, F.A., et al., Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol, 2008. 38(4): p. 957–67.

    Google Scholar 

  30. Naito, M. and E. Wisse, Filtration effect of endothelial fenestrations on chylomicron transport in neonatal rat liver sinusoids. Cell Tissue Res, 1978. 190(3): p. 371–82.

    Google Scholar 

  31. Hennigs, J.K., et al., Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells, 2021. 10(10): p. 2712.

    Google Scholar 

  32. Ding, B.S., et al., Endothelial-derived angiocrine signals induce and sustain regenerative lung alveolarization. Cell, 2011. 147(3): p. 539–53.

    Google Scholar 

  33. Gillich, A., et al., Capillary cell-type specialization in the alveolus. Nature, 2020. 586(7831): p. 785–789.

    Google Scholar 

  34. Liu, S., J. Cimprich, and B.M. Varisco, Mouse pneumonectomy model of compensatory lung growth. Journal of visualized experiments: JoVE, 2014(94): p. 52294.

    Google Scholar 

  35. Hogan, B.L., et al., Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell, 2014. 15(2): p. 123–38.

    Google Scholar 

  36. Mammoto, T., M. Muyleart, and A. Mammoto, Endothelial YAP1 in Regenerative Lung Growth through the Angiopoietin-Tie2 Pathway. Am J Respir Cell Mol Biol, 2019. 60(1): p. 117–127.

    Google Scholar 

  37. Cao, Z., et al., Targeting of the pulmonary capillary vascular niche promotes lung alveolar repair and ameliorates fibrosis. Nat Med, 2016. 22(2): p. 154–62.

    Google Scholar 

  38. Pardali, E., et al., TGF-β-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci, 2017. 18(10).

    Google Scholar 

  39. Jacob, A., et al., Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell, 2017. 21(4): p. 472–488.

    Google Scholar 

  40. Huang, S.X.L., et al., Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotech, 2014. 32(1): p. 84–91.

    Google Scholar 

  41. Ikuno, T., et al., Efficient and robust differentiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One, 2017. 12(3): p. e0173271.

    Google Scholar 

  42. Williams, I.M. and J.C. Wu, Generation of Endothelial Cells From Human Pluripotent Stem Cells. Arterioscler Thromb Vasc Biol, 2019. 39(7): p. 1317–1329.

    Google Scholar 

  43. Hawkins, F., et al., Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J Clin Invest, 2017. 127(6): p. 2277–2294.

    Google Scholar 

  44. Mammoto, T., et al., Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway. American journal of respiratory cell and molecular biology, 2016. 54(1): p. 103–113.

    Google Scholar 

  45. Lee, J.H., et al., Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 2014. 156(3): p. 440–55.

    Google Scholar 

  46. Ng, W.H., et al., Recapitulate Human Cardio-pulmonary Co-development Using Simultaneous Multilineage Differentiation of Pluripotent Stem Cells. bioRxiv, 2021: p. 2021.03.03.433714.

    Google Scholar 

  47. Drakhlis, L., et al., Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol, 2021. 39(6): p. 737–746.

    Google Scholar 

  48. Lippmann, E.S., et al., Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nature biotechnology, 2012. 30(8): p. 783–791.

    Google Scholar 

  49. Giacomelli, E., et al., Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development (Cambridge, England), 2017. 144(6): p. 1008–1017.

    Google Scholar 

  50. Giacomelli, E., et al., Co-Differentiation of Human Pluripotent Stem Cells-Derived Cardiomyocytes and Endothelial Cells from Cardiac Mesoderm Provides a Three-Dimensional Model of Cardiac Microtissue. Curr Protoc Hum Genet, 2017. 95: p. 21.9.1–21.9.22.

    Google Scholar 

  51. Helle, E., et al., HiPS-Endothelial Cells Acquire Cardiac Endothelial Phenotype in Co-culture With hiPS-Cardiomyocytes. Front Cell Dev Biol, 2021. 9: p. 715093.

    Google Scholar 

  52. Holloway, E.M., et al., Differentiation of Human Intestinal Organoids with Endogenous Vascular Endothelial Cells. Dev Cell, 2020. 54(4): p. 516–528.e7.

    Google Scholar 

  53. Shi, Y., et al., Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS biology, 2020. 18(5): p. e3000705–e3000705.

    Google Scholar 

  54. Takebe, T., et al., Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature, 2013. 499(7459): p. 481–484.

    Google Scholar 

  55. Takebe, T., et al., Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature Protocols, 2014. 9(2): p. 396–409.

    Google Scholar 

  56. Takebe, T., et al., Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell-Driven Condensation. Cell Stem Cell, 2015. 16(5): p. 556–65.

    Google Scholar 

  57. Liu, Y., et al., A novel prevascularized tissue-engineered chamber as a site for allogeneic and xenogeneic islet transplantation to establish a bioartificial pancreas. PLoS One, 2020. 15(12): p. e0234670.

    Google Scholar 

  58. Song, W., et al., Engineering transferrable microvascular meshes for subcutaneous islet transplantation. Nature Communications, 2019. 10(1): p. 4602.

    Google Scholar 

  59. Nalbach, L., et al., Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med, 2021. 13(1): p. e12616.

    Google Scholar 

  60. Ott, H.C., et al., Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med, 2010. 16(8): p. 927–933.

    Google Scholar 

  61. Ott, H.C., et al., Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med, 2008. 14(2): p. 213–221.

    Google Scholar 

  62. Petersen, T.H., et al., Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs, 2012. 195(3): p. 222–231.

    Google Scholar 

  63. Cortiella, J., et al., Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A, 2010. 16(8): p. 2565–80.

    Google Scholar 

  64. Ren, X., et al., Engineering pulmonary vasculature in decellularized rat and human lungs. Nature Biotechnology, 2015. 33(10): p. 1097–102.

    Google Scholar 

  65. Dorrello, N.V., et al., Functional vascularized lung grafts for lung bioengineering. Science Advances, 2017. 3(8): p. e1700521.

    Google Scholar 

  66. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662–1668.

    Google Scholar 

  67. Huh, D., et al., A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med, 2012. 4(159): p. 159ra147.

    Google Scholar 

  68. Stucki, A.O., et al., A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip, 2015. 15(5): p. 1302–10.

    Google Scholar 

  69. Stucki, J.D., et al., Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 2018. 8(1): p. 14359.

    Google Scholar 

  70. Jain, A., et al., Primary Human Lung Alveolus-on-a-chip Model of Intravascular Thrombosis for Assessment of Therapeutics. Clin Pharmacol Ther, 2018. 103(2): p. 332–340.

    Google Scholar 

  71. Zamprogno, P., et al., Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Communications Biology, 2021. 4(1): p. 168.

    Google Scholar 

  72. Guan, M., et al., Development of alveolar-capillary-exchange (ACE) chip and its application for assessment of PM(2.5)-induced toxicity. Ecotoxicol Environ Saf, 2021. 223: p. 112601.

    Google Scholar 

  73. Zhang, B., et al., Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nature materials, 2016. 15(6): p. 669–678.

    Google Scholar 

  74. Morgan, J.T., et al., Fabrication of centimeter-scale and geometrically arbitrary vascular networks using in vitro self-assembly. Biomaterials, 2019. 189: p. 37–47.

    Google Scholar 

  75. Lewis, K.J., et al., In vitro model alveoli from photodegradable microsphere templates. Biomater Sci, 2015. 3(6): p. 821–32.

    Google Scholar 

  76. Horváth, L., et al., Engineering an in vitro air-blood barrier by 3D bioprinting. Scientific Reports, 2015. 5(1): p. 7974.

    Google Scholar 

  77. Kolesky, D.B., et al., Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A, 2016. 113(12): p. 3179–84.

    Google Scholar 

  78. Gao, G., et al., Coaxial Cell Printing of Freestanding, Perfusable, and Functional In Vitro Vascular Models for Recapitulation of Native Vascular Endothelium Pathophysiology. Adv Healthc Mater, 2018. 7(23): p. e1801102.

    Google Scholar 

  79. Grigoryan, B., et al., Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science (New York, N.Y.), 2019. 364(6439): p. 458–464.

    Google Scholar 

  80. Lee, A., et al., 3D bioprinting of collagen to rebuild components of the human heart. Science, 2019. 365(6452): p. 482–487.

    Google Scholar 

  81. Mirdamadi, E., et al., FRESH 3D Bioprinting a Full-Size Model of the Human Heart. ACS Biomaterials Science & Engineering, 2020. 6(11): p. 6453–6459.

    Google Scholar 

  82. Goss, K.N., et al., Early Pulmonary Vascular Disease in Young Adults Born Preterm. Am J Respir Crit Care Med, 2018. 198(12): p. 1549–1558.

    Google Scholar 

  83. Naumburg, E., et al., Risk factors for pulmonary arterial hypertension in children and young adults. Pediatr Pulmonol, 2017. 52(5): p. 636–641.

    Google Scholar 

  84. Galiè, N., et al., 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J, 2016. 37(1): p. 67–119.

    Google Scholar 

  85. Dornia, C., et al., Multidetector computed tomography for detection and characterization of pulmonary hypertension in consideration of WHO classification. J Comput Assist Tomogr, 2012. 36(2): p. 175–80.

    Google Scholar 

  86. Coste, F., et al., CT evaluation of small pulmonary vessels area in patients with COPD with severe pulmonary hypertension. Thorax, 2016. 71(9): p. 830–7.

    Google Scholar 

  87. Reiter, G., et al., Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging, 2008. 1(1): p. 23–30.

    Google Scholar 

  88. Hueper, K., et al., Pulmonary Microvascular Blood Flow in Mild Chronic Obstructive Pulmonary Disease and Emphysema. The MESA COPD Study. Am J Respir Crit Care Med, 2015. 192(5): p. 570–80.

    Google Scholar 

  89. McLaughlin, V.V., et al., ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol, 2009. 53(17): p. 1573–619.

    Google Scholar 

  90. Montani, D., et al., Pulmonary arterial hypertension. Orphanet Journal of Rare Diseases, 2013. 8(1): p. 97.

    Google Scholar 

  91. Augustine, D.X., et al., Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo research and practice, 2018. 5(3): p. G11–G24.

    Google Scholar 

  92. Wilson, D.W., et al., Mechanisms and pathology of monocrotaline pulmonary toxicity. Crit Rev Toxicol, 1992. 22(5–6): p. 307–25.

    Google Scholar 

  93. Gomez-Arroyo, J.G., et al., The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol, 2012. 302(4): p. L363–9.

    Google Scholar 

  94. Kay, J.M., P. Harris, and D. Heath, Pulmonary hypertension produced in rats by ingestion of Crotalaria spectabilis seeds. Thorax, 1967. 22(2): p. 176–179.

    Google Scholar 

  95. Rosenberg, H.C. and M. Rabinovitch, Endothelial injury and vascular reactivity in monocrotaline pulmonary hypertension. Am J Physiol, 1988. 255(6 Pt 2): p. H1484–91.

    Google Scholar 

  96. Sehgal, P.B. and S. Mukhopadhyay, Dysfunctional intracellular trafficking in the pathobiology of pulmonary arterial hypertension. Am J Respir Cell Mol Biol, 2007. 37(1): p. 31–7.

    Google Scholar 

  97. Huang, J., et al., Progressive endothelial cell damage in an inflammatory model of pulmonary hypertension. Exp Lung Res, 2010. 36(1): p. 57–66.

    Google Scholar 

  98. Taraseviciene-Stewart, L., et al., Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. Faseb j, 2001. 15(2): p. 427–38.

    Google Scholar 

  99. Toba, M., et al., Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol, 2014. 306(2): p. H243–50.

    Google Scholar 

  100. Nicolls, M.R., et al., New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ, 2012. 2(4): p. 434–42.

    Google Scholar 

  101. Chen, Y., et al., A novel rat model of pulmonary hypertension induced by mono treatment with SU5416. Hypertension Research, 2020. 43(8): p. 754–764.

    Google Scholar 

  102. Mizuno, S., et al., Severe pulmonary arterial hypertension induced by SU5416 and ovalbumin immunization. American journal of respiratory cell and molecular biology, 2012. 47(5): p. 679–687.

    Google Scholar 

  103. Sanz, J., et al., Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging, 2009. 2(3): p. 286–95.

    Google Scholar 

  104. Hunter, K.S., S.R. Lammers, and R. Shandas, Pulmonary vascular stiffness: measurement, modeling, and implications in normal and hypertensive pulmonary circulations. Comprehensive Physiology, 2011. 1(3): p. 1413–1435.

    Google Scholar 

  105. Scarritt, M.E., et al., Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells. Tissue engineering. Part A, 2014. 20(9–10): p. 1426–1443.

    Google Scholar 

  106. Minhas, J., et al., Loss of Pulmonary Vascular Volume as a Predictor of Right Ventricular Dysfunction and Mortality in Acute Pulmonary Embolism. Circ Cardiovasc Imaging, 2021. 14(9): p. e012347.

    Google Scholar 

  107. Morrone, D. and V. Morrone, Acute Pulmonary Embolism: Focus on the Clinical Picture. kcj, 2018. 48(5): p. 365–381.

    Google Scholar 

  108. Dantzker, D.R. and J.S. Bower, Alterations in gas exchange following pulmonary thromboembolism. Chest, 1982. 81(4): p. 495–501.

    Google Scholar 

  109. Fernandes, C.J., et al., Pulmonary Embolism and Gas Exchange. Respiration, 2019. 98(3): p. 253–262.

    Google Scholar 

  110. Kato, S., et al., Changes in pulmonary endothelial cell properties during bleomycin-induced pulmonary fibrosis. Respiratory Research, 2018. 19(1): p. 127.

    Google Scholar 

  111. Ebina, M., et al., Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 2004. 169(11): p. 1203–8.

    Google Scholar 

  112. Colombat, M., et al., Pulmonary vascular lesions in end-stage idiopathic pulmonary fibrosis: Histopathologic study on lung explant specimens and correlations with pulmonary hemodynamics. Hum Pathol, 2007. 38(1): p. 60–5.

    Google Scholar 

  113. Greenhalgh, S.N., J.P. Iredale, and N.C. Henderson, Origins of fibrosis: pericytes take centre stage. F1000prime reports, 2013. 5: p. 37–37.

    Google Scholar 

  114. Hung, C., et al., Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med, 2013. 188(7): p. 820–30.

    Google Scholar 

  115. Cao, Z., et al., Targeting the vascular and perivascular niches as a regenerative therapy for lung and liver fibrosis. Sci Transl Med, 2017. 9(405).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, W.H., Varghese, B., Ren, X. (2023). Understanding and Engineering the Pulmonary Vasculature. In: Magin, C.M. (eds) Engineering Translational Models of Lung Homeostasis and Disease. Advances in Experimental Medicine and Biology, vol 1413. Springer, Cham. https://doi.org/10.1007/978-3-031-26625-6_12

Download citation

Publish with us

Policies and ethics