Skip to main content

MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13718))

Abstract

Epidemic prediction is a fundamental task for epidemic control and prevention. Many mechanistic models and deep learning models are built for this task. However, most mechanistic models have difficulty estimating the time/region-varying epidemiological parameters, while most deep learning models lack the guidance of epidemiological domain knowledge and interpretability of prediction results. In this study, we propose a novel hybrid model called MepoGNN for multi-step multi-region epidemic forecasting by incorporating Graph Neural Networks (GNNs) and graph learning mechanisms into Metapopulation SIR model. Our model can not only predict the number of confirmed cases but also explicitly learn the epidemiological parameters and the underlying epidemic propagation graph from heterogeneous data in an end-to-end manner. Experiment results demonstrate our model outperforms the existing mechanistic models and deep learning models by a large margin. Furthermore, the analysis on the learned parameters demonstrates the high reliability and interpretability of our model and helps better understanding of epidemic spread. Our model and data have already been public on GitHub https://github.com/deepkashiwa20/MepoGNN.git.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www3.nhk.or.jp/news/special/coronavirus/data/.

  2. 2.

    https://github.com/swsoyee/2019-ncov-japan.

  3. 3.

    https://data.humdata.org/dataset/movement-range-maps.

References

  1. Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull. 59(28), 3511–3522 (2014)

    Article  Google Scholar 

  2. Wang, J., Wang, X., Wu, J.: Inferring metapopulation propagation network for intra-city epidemic control and prevention. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 830–838 (2018)

    Google Scholar 

  3. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven contagion phenomena. Science 342(6164), 1337–1342 (2013)

    Google Scholar 

  4. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. 101(42), 15124–15129 (2004)

    Article  Google Scholar 

  5. Wesolowski, A., Eagle, N., Tatem, A.J., Smith, D.L., Noor, A.M., Snow, R.W., et al.: Quantifying the impact of human mobility on malaria. Science 338(6104), 267–270 (2012)

    Article  Google Scholar 

  6. Venna, S.R., Tavanaei, A., Gottumukkala, R.N., Raghavan, V.V., Maida, A.S., et al.: A novel data-driven model for real-time influenza forecasting. IEEE Access 7, 7691–7701 (2018)

    Article  Google Scholar 

  7. Wu, Y., Yang, Y., Nishiura, H., Saitoh, M.: Deep learning for epidemiological predictions. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 1085–1088 (2018)

    Google Scholar 

  8. Arora, P., Kumar, H., Panigrahi, B.K.: Prediction and analysis of covid-19 positive cases using deep learning models: a descriptive case study of India. Chaos, Solitons Fractals 139, 110017 (2020)

    Article  MathSciNet  Google Scholar 

  9. Deng, S., Wang, S., Rangwala, H., Wang, L., Ning, Y.: Cola-gnn: cross-location attention based graph neural networks for long-term ili prediction. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 245–254 (2020)

    Google Scholar 

  10. Kapoor, A., Ben, X., Liu, L., Perozzi, B., Barnes, M., Blais, M., et al.: Examining covid-19 forecasting using spatio-temporal graph neural networks. arXiv preprint arXiv:2007.03113 (2020)

  11. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)

    Google Scholar 

  12. Dehning, J., Zierenberg, J., Spitzner, F.P., Wibral, M., Neto, J.P., Wilczek, M., et al.: Inferring change points in the spread of covid-19 reveals the effectiveness of interventions. Science 369(6500), eabb9789 (2020)

    Google Scholar 

  13. Chang, S., Pierson, E., Koh, P.W., Gerardin, J., Redbird, B., Grusky, D., et al.: Mobility network models of covid-19 explain inequities and inform reopening. Nature 589(7840), 82–87 (2021)

    Article  Google Scholar 

  14. Chinazzi, M., Davis, J.T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., et al.: The effect of travel restrictions on the spread of the 2019 novel coronavirus (covid-19) outbreak. Science 368(6489), 395–400 (2020)

    Article  Google Scholar 

  15. Jiang, R., et al.: Countrywide origin-destination matrix prediction and its application for covid-19. In: Dong, Y., Kourtellis, N., Hammer, B., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12978, pp. 319–334. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86514-6_20

    Chapter  Google Scholar 

  16. Aleta, A., Martin-Corral, D., Pastore y Piontti, A., Ajelli, M., Litvinova, M., Chinazzi, M., et al.: Modelling the impact of testing, contact tracing and household quarantine on second waves of covid-19. Nat. Hum. Behav. 4(9), 964–971 (2020)

    Google Scholar 

  17. Chang, S.L., Harding, N., Zachreson, C., Cliff, O.M., Prokopenko, M.: Modelling transmission and control of the covid-19 pandemic in Australia. Nat. Commun. 11(1), 1–13 (2020)

    Article  Google Scholar 

  18. Yang, C., Zhang, Z., Fan, Z., Jiang, R., Chen, Q., Song, X., et al.: Epimob: interactive visual analytics of citywide human mobility restrictions for epidemic control. IEEE Trans. Vis. Comput. Graph. 1 (2022)

    Google Scholar 

  19. Gao, J., Sharma, R., Qian, C., Glass, L.M., Spaeder, J., Romberg, J., et al.: Stan: spatio-temporal attention network for pandemic prediction using real-world evidence. J. Am. Med. Inf. Assoc. 28(4), 733–743 (2021)

    Article  Google Scholar 

  20. Cui, Y., Zhu, C., Ye, G., Wang, Z., Zheng, K.: Into the unobservables: a multi-range encoder-decoder framework for covid-19 prediction. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 292–301 (2021)

    Google Scholar 

  21. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 3634–3640 (2018)

    Google Scholar 

  22. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International Conference on Learning Representations (2018)

    Google Scholar 

  23. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1907–1913 (2019)

    Google Scholar 

  24. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: International conference on machine learning, pp. 933–941. PMLR (2017)

    Google Scholar 

  25. Su, W., Fu, W., Kato, K., Wong, Z.S.Y.: “Japan live dashboard” for covid-19: a scalable solution to monitor real-time and regional-level epidemic case data. In: Context Sensitive Health Informatics: The Role of Informatics in Global Pandemics, pp. 21–25. IOS Press (2021)

    Google Scholar 

  26. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)

    Google Scholar 

  27. Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. Adv. Neural Inf. Process. Syst. 33, 17804–17815 (2020)

    Google Scholar 

  28. Nakanishi, M., Shibasaki, R., Yamasaki, S., Miyazawa, S., Usami, S., Nishiura, H., et al.: On-site dining in Tokyo during the covid-19 pandemic: time series analysis using mobile phone location data. JMIR mHealth and uHealth 9(5), e27342 (2021)

    Article  Google Scholar 

  29. Wang, L., Adiga, A., Chen, J., Sadilek, A., Venkatramanan, S., Marathe, M.: Causal-gnn: causal-based graph neural networks for spatio-temporal epidemic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by JST SICORP Grant Number JPMJSC2104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renhe Jiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Q., Jiang, R., Yang, C., Fan, Z., Song, X., Shibasaki, R. (2023). MepoGNN: Metapopulation Epidemic Forecasting with Graph Neural Networks. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics