Skip to main content

Ordinal Quantification Through Regularization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Quantification, i.e., the task of training predictors of the class prevalence values in sets of unlabelled data items, has received increased attention in recent years. However, most quantification research has concentrated on developing algorithms for binary and multiclass problems in which the classes are not ordered. We here study the ordinal case, i.e., the case in which a total order is defined on the set of \(n>2\) classes. We give three main contributions to this field. First, we create and make available two datasets for ordinal quantification (OQ) research that overcome the inadequacies of the previously available ones. Second, we experimentally compare the most important OQ algorithms proposed in the literature so far. To this end, we bring together algorithms that are proposed by authors from very different research fields, who were unaware of each other’s developments. Third, we propose three OQ algorithms, based on the idea of preventing ordinally implausible estimates through regularization. Our experiments show that these algorithms outperform the existing ones if the ordinal plausibility assumption holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code and supplementary results: https://github.com/mirkobunse/ecml22.

  2. 2.

    http://jmcauley.ucsd.edu/data/amazon/links.html.

  3. 3.

    https://huggingface.co/docs/transformers/model_doc/roberta.

  4. 4.

    https://factdata.app.tu-dortmund.de/.

  5. 5.

    https://github.com/fact-project/open_crab_sample_analysis/.

References

  1. Aad, G., Abbott, B., Abbott, D.C., et al.: Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at \(\sqrt{s} = 13\) TeV with the ATLAS detector. Europ. Phys. J. C 81(8), 737 (2021)

    Article  Google Scholar 

  2. Aartsen, M.G., Ackermann, M., Adams, J., et al.: Measurement of the \(\nu _{\mu }\) energy spectrum with IceCube-79. Europ. Phys. J. C 77(10) (2017)

    Google Scholar 

  3. Anderhub, H., Backes, M., Biland, A., et al.: Design and operation of FACT, the first G-APD Cherenkov telescope. J. Inst. 8(06), P06008 (2013)

    Google Scholar 

  4. Bella, A., Ferri, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Quantification via probability estimators. In: International Conference on Data Mining (2010)

    Google Scholar 

  5. Blobel, V.: Unfolding methods in high-energy physics experiments. Technical report, DESY-84-118, CERN, Geneva, CH (1985)

    Google Scholar 

  6. Blobel, V.: An unfolding method for high-energy physics experiments. In: Advanced Statistical Techniques in Particle Physics, Durham, UK, pp. 258–267 (2002)

    Google Scholar 

  7. Börner, M., Hoinka, T., Meier, M., et al.: Measurement/simulation mismatches and multivariate data discretization in the machine learning era. In: Conference on Astronomical Data Analysis Software and Systems, pp. 431–434 (2017)

    Google Scholar 

  8. Bunse, M.: Unification of algorithms for quantification and unfolding. In: Workshop on Machine Learning for Astroparticle Physics and Astronomy. Gesellschaft für Informatik e.V. (2022, to appear)

    Google Scholar 

  9. Bunse, M., Piatkowski, N., Morik, K., Ruhe, T., Rhode, W.: Unification of deconvolution algorithms for Cherenkov astronomy. In: Data Science and Advanced Analytics, pp. 21–30 (2018)

    Google Scholar 

  10. Da San Martino, G., Gao, W., Sebastiani, F.: Ordinal text quantification. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 937–940 (2016)

    Google Scholar 

  11. D’Agostini, G.: A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instr. Meth. Phys. Res.: Sect. A 362(2–3), 487–498 (1995)

    Google Scholar 

  12. D’Agostini, G.: Improved iterative Bayesian unfolding (2010). arXiv:1010.0632

  13. Esuli, A.: ISTI-CNR at SemEval-2016 task 4: quantification on an ordinal scale. In: International Workshop on Semantic Evaluation, pp. 92–95 (2016)

    Google Scholar 

  14. Esuli, A., Moreo, A., Sebastiani, F.: LeQua@CLEF2022: learning to quantify. In: Hagen, M., et al. (eds.) ECIR 2022. LNCS, vol. 13186, pp. 374–381. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99739-7_47

    Chapter  Google Scholar 

  15. Esuli, A., Sebastiani, F.: Sentiment quantification. IEEE Intell. Syst. 25(4), 72–75 (2010)

    Article  Google Scholar 

  16. Forman, G.: Counting positives accurately despite inaccurate classification. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 564–575. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_55

    Chapter  Google Scholar 

  17. Gao, W., Sebastiani, F.: From classification to quantification in tweet sentiment analysis. Soc. Netw. Anal. Min. 6(1), 1–22 (2016). https://doi.org/10.1007/s13278-016-0327-z

    Article  Google Scholar 

  18. Higashinaka, R., Funakoshi, K., Inaba, M., Tsunomori, Y., Takahashi, T., Kaji, N.: Overview of the 3rd dialogue breakdown detection challenge. In: Dialog System Technology Challenge (2017)

    Google Scholar 

  19. Hoecker, A., Kartvelishvili, V.: SVD approach to data unfolding. Nucl. Instr. Meth. Phys. Res.: Sect. A 372(3), 469–481 (1996)

    Google Scholar 

  20. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach (2019). arXiv:1907.11692

  21. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommendations on styles and substitutes. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 43–52 (2015)

    Google Scholar 

  22. Moreno-Torres, J.G., Raeder, T., Alaíz-Rodríguez, R., Chawla, N.V., Herrera, F.: A unifying view on dataset shift in classification. Pattern Recogn. 45(1), 521–530 (2012)

    Article  Google Scholar 

  23. Mueller, J.L., Siltanen, S.: Linear and nonlinear inverse problems with practical applications. SIAM (2012)

    Google Scholar 

  24. Nachman, B., Urbanek, M., de Jong, W.A., Bauer, C.W.: Unfolding quantum computer readout noise. NPJ Quant. Inf. 6(1), 84 (2020)

    Article  Google Scholar 

  25. Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016 task 4: sentiment analysis in Twitter. In: International Workshop on Semantic Evaluation, pp. 1–18 (2016)

    Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Cham (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  27. Nöthe, M., Adam, J., Ahnen, M.L., et al.: FACT - performance of the first Cherenkov telescope observing with SiPMs. In: International Cosmic Ray Conference (2018)

    Google Scholar 

  28. Pedregosa, F., Bach, F., Gramfort, A.: On the consistency of ordinal regression methods. J. Mach. Learn. Res. 18, 55:1–55:35 (2017)

    Google Scholar 

  29. Rennie, J.D., Srebro, N.: Loss functions for preference levels: regression with discrete ordered labels. In: IJCAI 2005 Workshop on Advances in Preference Handling (2005)

    Google Scholar 

  30. Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In: International Workshop on Semantic Evaluation, pp. 502–518 (2017)

    Google Scholar 

  31. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: International Conference on Computer Vision, pp. 59–66 (1998)

    Google Scholar 

  32. Ruhe, T., Schmitz, M., Voigt, T., Wornowizki, M.: DSEA: a data mining approach to unfolding. In: International Cosmic Ray Conference, pp. 3354–3357 (2013)

    Google Scholar 

  33. Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput. 14(1), 21–41 (2002)

    Article  MATH  Google Scholar 

  34. Sakai, T.: Comparing two binned probability distributions for information access evaluation. In: International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1073–1076 (2018)

    Google Scholar 

  35. Schmelling, M.: The method of reduced cross-entropy: a general approach to unfold probability distributions. Nucl. Instr. Meth. Phys. Res.: Sect. A 340(2), 400–412 (1994)

    Google Scholar 

  36. Schmitt, S.: TUnfold, an algorithm for correcting migration effects in high energy physics. J. Inst. 7(10), T10003 (2012)

    Google Scholar 

  37. Smith, N.A., Tromble, R.W.: Sampling uniformly from the unit simplex. Technical report, Johns Hopkins University (2004)

    Google Scholar 

  38. Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multidimensional histograms. Comput. Vis. Graph. Image Proc. 32, 328–336 (1985)

    Google Scholar 

  39. Zeng, Z., Kato, S., Sakai, T.: Overview of the NTCIR-14 short text conversation task: dialogue quality and nugget detection subtasks. In: NTCIR (2019)

    Google Scholar 

  40. Zeng, Z., Kato, S., Sakai, T., Kang, I.: Overview of the NTCIR-15 dialogue evaluation task (DialEval-1). In: NTCIR (2020)

    Google Scholar 

Download references

Acknowledgments

The work by M.B., A.M., and F.S. has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871042 (SoBigData++). M.B. and M.S. have further been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Data Analysis”, project C3, https://sfb876.tu-dortmund.de. A.M. and F.S. have further been supported by the AI4Media project, funded by the European Commission (Grant 951911) under the H2020 Programme ICT-48-2020. The authors’ opinions do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Bunse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bunse, M., Moreo, A., Sebastiani, F., Senz, M. (2023). Ordinal Quantification Through Regularization. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13717. Springer, Cham. https://doi.org/10.1007/978-3-031-26419-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26419-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26418-4

  • Online ISBN: 978-3-031-26419-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics