Skip to main content

Bootstrap State Representation Using Style Transfer for Better Generalization in Deep Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13716))

Abstract

Deep Reinforcement Learning (RL) agents often overfit the training environment, leading to poor generalization performance. In this paper, we propose Thinker, a bootstrapping method to remove adversarial effects of confounding features from the observation in an unsupervised way, and thus, it improves RL agents’ generalization. Thinker first clusters experience trajectories into several clusters. These trajectories are then bootstrapped by applying a style transfer generator, which translates the trajectories from one cluster’s style to another while maintaining the content of the observations. The bootstrapped trajectories are then used for policy learning. Thinker has wide applicability among many RL settings. Experimental results reveal that Thinker leads to better generalization capability in the Procgen benchmark environments compared to base algorithms and several data augmentation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pytorch.org/hub/pytorch_vision_resnet/.

References

  1. Agarwal, R., Machado, M.C., Castro, P.S., Bellemare, M.G.: Contrastive behavioral similarity embeddings for generalization in reinforcement learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  2. Agarwal, R., Schwarzer, M., Castro, P.S., Courville, A., Bellemare, M.G.: Deep reinforcement learning at the edge of the statistical precipice. In: Advances in Neural Information Processing Systems (2021)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  4. Burda, Y., Edwards, H., Storkey, A., Klimov, O.: Exploration by random network distillation. arXiv preprint arXiv:1810.12894 (2018)

  5. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  6. Cobbe, K., Hesse, C., Hilton, J., Schulman, J.: Leveraging procedural generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588 (2019)

  7. Cobbe, K., Klimov, O., Hesse, C., Kim, T., Schulman, J.: Quantifying generalization in reinforcement learning. In: International Conference on Machine Learning, pp. 1282–1289. PMLR (2019)

    Google Scholar 

  8. Epstude, K., Roese, N.J.: The functional theory of counterfactual thinking. Pers. Soc. Psychol. Rev. 12(2), 168–192 (2008)

    Article  Google Scholar 

  9. Espeholt, L., et al.: Impala: scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561 (2018)

  10. Farebrother, J., Machado, M.C., Bowling, M.: Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123 (2018)

  11. Gamrian, S., Goldberg, Y.: Transfer learning for related reinforcement learning tasks via image-to-image translation. In: International Conference on Machine Learning, pp. 2063–2072. PMLR (2019)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  13. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028 (2017)

  14. Hardt, M., Recht, B., Singer, Y.: Train faster, generalize better: stability of stochastic gradient descent. In: International Conference on Machine Learning, pp. 1225–1234. PMLR (2016)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Higgins, I., et al.: Darla: improving zero-shot transfer in reinforcement learning. arXiv preprint arXiv:1707.08475 (2017)

  17. Igl, M., et al.: Generalization in reinforcement learning with selective noise injection and information bottleneck. In: Advances in Neural Information Processing Systems, pp. 13978–13990 (2019)

    Google Scholar 

  18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  19. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: International Conference on Machine Learning, pp. 1857–1865. PMLR (2017)

    Google Scholar 

  20. Kostrikov, I., Yarats, D., Fergus, R.: Image augmentation is all you need: regularizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649 (2020)

  21. Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., Srinivas, A.: Reinforcement learning with augmented data. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  22. Laskin, M., Srinivas, A., Abbeel, P.: Curl: contrastive unsupervised representations for reinforcement learning. In: International Conference on Machine Learning, pp. 5639–5650. PMLR (2020)

    Google Scholar 

  23. Lee, K., Lee, K., Shin, J., Lee, H.: Network randomization: a simple technique for generalization in deep reinforcement learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  24. Liang, E., et al.: Rllib: abstractions for distributed reinforcement learning. In: International Conference on Machine Learning, pp. 3053–3062. PMLR (2018)

    Google Scholar 

  25. Osband, I., Aslanides, J., Cassirer, A.: Randomized prior functions for deep reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 8617–8629 (2018)

    Google Scholar 

  26. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Raileanu, R., Goldstein, M., Yarats, D., Kostrikov, I., Fergus, R.: Automatic data augmentation for generalization in deep reinforcement learning. arXiv preprint arXiv:2006.12862 (2020)

  28. Roese, N.J.: The functional basis of counterfactual thinking. J. Pers. Soc. Psychol. 66(5), 805 (1994)

    Article  Google Scholar 

  29. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  30. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  31. Song, X., Jiang, Y., Tu, S., Du, Y., Neyshabur, B.: Observational overfitting in reinforcement learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  32. Wang, K., Kang, B., Shao, J., Feng, J.: Improving generalization in reinforcement learning with mixture regularization. arXiv preprint arXiv:2010.10814 (2020)

  33. Zhang, A., Ballas, N., Pineau, J.: A dissection of overfitting and generalization in continuous reinforcement learning. arXiv preprint arXiv:1806.07937 (2018)

  34. Zhang, C., Vinyals, O., Munos, R., Bengio, S.: A study on overfitting in deep reinforcement learning. arXiv preprint arXiv:1804.06893 (2018)

  35. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF grants IIS-1850243, CCF-1918327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Masudur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahman, M.M., Xue, Y. (2023). Bootstrap State Representation Using Style Transfer for Better Generalization in Deep Reinforcement Learning. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13716. Springer, Cham. https://doi.org/10.1007/978-3-031-26412-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26412-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26411-5

  • Online ISBN: 978-3-031-26412-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics