Skip to main content

On the Prediction Instability of Graph Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Instability of trained models, i.e., the dependence of individual node predictions on random factors, can affect reproducibility, reliability, and trust in machine learning systems. In this paper, we systematically assess the prediction instability of node classification with state-of-the-art Graph Neural Networks (GNNs). With our experiments, we establish that multiple instantiations of popular GNN models trained on the same data with the same model hyperparameters result in almost identical aggregated performance, but display substantial disagreement in the predictions for individual nodes. We find that up to 30% of the incorrectly classified nodes differ across algorithm runs. We identify correlations between hyperparameters, node properties, and the size of the training set with the stability of predictions. In general, maximizing model performance implicitly also reduces model instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code and supplementary material are available at https://github.com/mklabunde/gnn-prediction-instability.

References

  1. Bahri, D., Jiang, H.: Locally adaptive label smoothing improves predictive churn. In: ICML (2021)

    Google Scholar 

  2. Bhojanapalli, S., et al.: On the reproducibility of neural network predictions. arXiv preprint arXiv:2102.03349 (2021)

  3. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

  4. Gao, Z., Isufi, E., Ribeiro, A.: Stability of graph convolutional neural networks to stochastic perturbations. Signal Process. 188, 108216 (2021)

    Article  Google Scholar 

  5. Hu, W., et al.: Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687 (2020)

  6. Jiang, H., Narasimhan, H., Bahri, D., Cotter, A., Rostamizadeh, A.: Churn reduction via distillation. In: ICLR (2022)

    Google Scholar 

  7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  8. Kornblith, S., Norouzi, M., Lee, H., Hinton, G.: Similarity of neural network representations revisited. In: ICML (2019)

    Google Scholar 

  9. Liu, H., S., A.P.V., Patwardhan, S., Grasch, P., Agarwal, S.: Model stability with continuous data updates. arXiv preprint arXiv:2201.05692 (2022)

  10. Madani, O., Pennock, D., Flake, G.: Co-validation: using model disagreement on unlabeled data to validate classification algorithms. In: NeurIPS (2004)

    Google Scholar 

  11. Mernyei, P., Cangea, C.: Wiki-CS: a Wikipedia-based benchmark for graph neural networks. arXiv preprint arXiv:2007.02901 (2020)

  12. Milani Fard, M., Cormier, Q., Canini, K., Gupta, M.: Launch and iterate: reducing prediction churn. In: NeurIPS (2016)

    Google Scholar 

  13. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  14. Schumacher, T., Wolf, H., Ritzert, M., Lemmerich, F., Grohe, M., Strohmaier, M.: The effects of randomness on the stability of node embeddings. In: Workshop on Graph Embedding and Mining, co-located with ECML PKDD (2021)

    Google Scholar 

  15. Shamir, G.I., Coviello, L.: Anti-distillation: improving reproducibility of deep networks. arXiv preprint arXiv:2010.09923 (2020)

  16. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868 (2018)

  17. Summers, C., Dinneen, M.J.: Nondeterminism and instability in neural network optimization. In: ICML (2021)

    Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  19. Wang, C., Rao, W., Guo, W., Wang, P., Liu, J., Guan, X.: Towards understanding the instability of network embedding. IEEE Trans. Knowl. Data Eng. 34(2), 927–941 (2022)

    Article  Google Scholar 

  20. Yang, Z., Cohen, W., Salakhudinov, R.: Revisiting semi-supervised learning with graph embeddings. In: ICML (2016)

    Google Scholar 

  21. Zhuang, D., Zhang, X., Song, S.L., Hooker, S.: Randomness in neural network training: characterizing the impact of tooling. arXiv preprint arXiv:2106.11872 (2021)

  22. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: KDD (2018)

    Google Scholar 

  23. Zügner, D., Günnemann, S.: Certifiable robustness and robust training for graph convolutional networks. In: KDD (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Klabunde .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2328 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klabunde, M., Lemmerich, F. (2023). On the Prediction Instability of Graph Neural Networks. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13715. Springer, Cham. https://doi.org/10.1007/978-3-031-26409-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26409-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26408-5

  • Online ISBN: 978-3-031-26409-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics