Skip to main content

Optimizing Intrusion Detection Systems Placement Against Network Virus Spreading Using a Partially Observable Stochastic Minimum-Threat Path Game

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2022)

Abstract

Intrusion Detection Systems (IDS) are security tools that aim to detect tentative of virus propagation between two interconnected devices. As the propagation of a virus or malware is dynamic and can be strategically controlled by the attacker, we model the problem of optimally determining IDS position in a network as a partially observable zero-sum stochastic Minimum-Threat path game (POSMPG). The goal of the attacker is to infect a maximum number of nodes at a given instant, and then a state-extended stochastic game framework is proposed in order to get optimality equations. We are then able to determine optimal solutions of the POSMPG and to apply our result to an adversarial control of virus propagation on a network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The reward of player 2 is assumed positive in [20].

  2. 2.

    In the case of epidemic for example, \(\varphi \left( z\right) \) is the number of infected nodes in state z.

  3. 3.

    One can take \(S^{\gamma }_{N} = S \times \mathbbm {N}\).

References

  1. Ansari, A., Dadgar, M., Hamzeh, A., Schlötterer, J., Granitzer, M.: Competitive influence maximization: integrating budget allocation and seed selection. https://www.researchgate.net/profile/Masoud-Dadgar-2/publication/338228670_Competitive_Influence_Maximization_Integrating_Budget_Allocation_and_Seed_Selection/links/5e177f904585159aa4c2d628/Competitive-Influence-Maximization-Integrating-Budget-Allocation-and-Seed-Selection.pdf

  2. Antonakakis, M., et al.: Understanding the Mirai botnet. In: 26th USENIX Security Symposium, pp. 1093–1110 (2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

  3. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1–26 (2008). https://doi.org/10.1145/1284680.1284681

    Article  Google Scholar 

  4. Chen, L., Wang, Z., Li, F., Guo, Y., Geng, K.: A stackelberg security game for adversarial outbreak detection in the internet of things. Sensors 20, 804 (2020). https://doi.org/10.3390/s20030804

    Article  Google Scholar 

  5. Chen, Z., Gao, L., Kwiat, K.: Modeling the spread of active worms. In: IEEE INFOCOM, vol. 3, pp. 1890–1900. IEEE (2003)

    Google Scholar 

  6. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2013)

    Article  Google Scholar 

  7. Garg, N., Grosu, D.: Deception in honeynets: a game-theoretic analysis. In: 2007 IEEE SMC Information Assurance and Security Workshop, pp. 107–113 (2007)

    Google Scholar 

  8. Horák, K.: Scalable algorithms for solving stochastic games with limited partial observability. Ph.D. thesis, Czech Technical University in Prague (2019)

    Google Scholar 

  9. Horák, K., Bosansky, B., Tomášek, P., Kiekintveld, C., Kamhoua, C.: Optimizing honeypot strategies against dynamic lateral movement using partially observable stochastic games. Comput. Secur. 87, 101579 (2019). https://doi.org/10.1016/j.cose.2019.101579

    Article  Google Scholar 

  10. Horák, K., Bošanský, B., Pĕchouček, M.: Heuristic search value iteration for one-sided partially observable stochastic games. In: International Joint Conference on Artificial Intelligence, vol. 31, pp. 558–564 (2017). ISBN 978-1-57735-780-3

    Google Scholar 

  11. Huang, Y., Zhu, Q.: Game-theoretic frameworks for epidemic spreading and human decision-making: a review. Dyn. Games Appl. 1–42 (2022)

    Google Scholar 

  12. Kephart, J., White, S.: Directed-graph epidemiological models of computer viruses. In: Proceedings of IEEE Symposium Research Security and Privacy (1991)

    Google Scholar 

  13. Kiss, I.Z., Miller, J.C., Simon, P.L., et al.: Mathematics of Epidemics on Networks, vol. 598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

    Book  MATH  Google Scholar 

  14. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: DDoS in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  15. Kumar, B., Bhuyan, B.: Using game theory to model DoS attack and defence. Sādhanā 44(12), 1–12 (2019). https://doi.org/10.1007/s12046-019-1228-4

    Article  MathSciNet  Google Scholar 

  16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  17. Raghavan, T.: Stochastic games-an overview. In: Stochastic Games and Related Topics, pp. 1–9 (1991)

    Google Scholar 

  18. Schneider, C., Mihaljev, T., Havlin, S., Herrmann, H.: Suppressing epidemics with a limited amount of immunization units. Phys. Rev. E 84, 061911 (2011). https://doi.org/10.1103/PhysRevE.84.061911

  19. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39, 1095–1100 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tomášek, P., Horák, K., Aradhye, A., Bošanskỳ, B., Chatterjee, K.: Solving partially observable stochastic shortest-path games (2021). https://www.ijcai.org/proceedings/2021/0575.pdf

  21. Trajanovski, S., Hayel, Y., Altman, E., Wang, H., Mieghem, P.: Decentralized protection strategies against sis epidemics in networks. IEEE Trans. Control Netw. Syst. 2, 406–419 (2015). https://doi.org/10.1109/TCNS.2015.2426755

    Article  MathSciNet  MATH  Google Scholar 

  22. Trajanovski, S., Kuipers, F., Hayel, Y., Altman, E., Mieghem, P.: Designing virus-resistant, high-performance networks: a game-formation approach. IEEE Trans. Control Netw. Syst. 5(4), 1682–1692 (2017). https://doi.org/10.1109/TCNS.2017.2747840

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoue, G.: Partially observable stochastic games for cyber deception against network epidemic. In: 11th International Conference GameSec (2020)

    Google Scholar 

  24. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoué, G.: Game-theoretic modeling of cyber deception against epidemic botnets in internet of things. IEEE Internet Things J. 9(4), 2678–2687 (2021)

    Article  Google Scholar 

  25. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoue, G.: A partially observable stochastic zero-sum game for a network epidemic control problem. Dyn. Games Appl. 12(1), 82–109 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Research was sponsored by the U.S. Army Research Office and was accomplished under Cooperative Agreement Number W911NF-22-2-0175 and Grant Number W911NF-21-1-0326. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Tsemogne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoué, G. (2023). Optimizing Intrusion Detection Systems Placement Against Network Virus Spreading Using a Partially Observable Stochastic Minimum-Threat Path Game. In: Fang, F., Xu, H., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2022. Lecture Notes in Computer Science, vol 13727. Springer, Cham. https://doi.org/10.1007/978-3-031-26369-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26369-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26368-2

  • Online ISBN: 978-3-031-26369-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics