Skip to main content

NoiseTransfer: Image Noise Generation with Contrastive Embeddings

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 706 Accesses

Abstract

Deep image denoising networks have achieved impressive success with the help of a considerably large number of synthetic train datasets. However, real-world denoising is a still challenging problem due to the dissimilarity between distributions of real and synthetic noisy datasets. Although several real-world noisy datasets have been presented, the number of train datasets (i.e., pairs of clean and real noisy images) is limited, and acquiring more real noise datasets is laborious and expensive. To mitigate this problem, numerous attempts to simulate real noise models using generative models have been studied. Nevertheless, previous works had to train multiple networks to handle multiple different noise distributions. By contrast, we propose a new generative model that can synthesize noisy images with multiple different noise distributions. Specifically, we adopt recent contrastive learning to learn distinguishable latent features of the noise. Moreover, our model can generate new noisy images by transferring the noise characteristics solely from a single reference noisy image. We demonstrate the accuracy and the effectiveness of our noise model for both known and unknown noise removal.

Code is available at https://github.com/shlee0/NoiseTransfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Histograms are computed with 256 bins evenly distributed in [−256, 256].

  2. 2.

    For visualization, the camera pipeline matlab code (https://github.com/AbdoKamel/simple-camera-pipeline) is used.

  3. 3.

    It compares the results for the first 60 training epochs, but is sufficient to confirm the effect of the proposed losses, allowing fair and efficient ablations.

References

  1. Abdelhamed, A., Afifi, M., Timofte, R., Brown, M.S.: NTIRE 2020 challenge on real image denoising: dataset, methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2020)

    Google Scholar 

  2. Abdelhamed, A., Brubaker, M.A., Brown, M.S.: Noise flow: noise modeling with conditional normalizing flows. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  3. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  4. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)

    Google Scholar 

  5. Anaya, J., Barbu, A.: Renoir-a dataset for real low-light image noise reduction. J. Vis. Commun. Image Represent. 51, 144–154 (2018)

    Article  Google Scholar 

  6. Anwar, S., Barnes, N.: Real image denoising with feature attention. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  7. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. PAMI 33(5), 898–916 (2011). https://doi.org/10.1109/TPAMI.2010.161

    Article  Google Scholar 

  8. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. In: Advances in Neural Information Processing Systems (NIPS) (2019)

    Google Scholar 

  9. Henz, B., Gastal, E.S.L., Oliveira, M.M.: Synthesizing camera noise using generative adversarial networks. IEEE Trans. Vis. Comput. Graph. 27(3), 2123–2135 (2021). https://doi.org/10.1109/TVCG.2020.3012120

    Article  Google Scholar 

  10. Cai, Y., Hu, X., Wang, H., Zhang, Y., Pfister, H., Wei, D.: Learning to generate realistic noisy images via pixel-level noise-aware adversarial training. In: Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems (NIPS) (2021)

    Google Scholar 

  11. Chang, K.-C., et al.: Learning camera-aware noise models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_21

    Chapter  Google Scholar 

  12. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3155–3164 (2018)

    Google Scholar 

  13. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)

    Google Scholar 

  14. Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised GANs via auxiliary rotation loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12154–12163 (2019)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS), vol. 27. Curran Associates, Inc. (2014)

    Google Scholar 

  16. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  17. Han, J., Shoeiby, M., Petersson, L., Armin, M.A.: Dual contrastive learning for unsupervised image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2021)

    Google Scholar 

  18. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9729–9738 (2020)

    Google Scholar 

  19. Hong, Z., Fan, X., Jiang, T., Feng, J.: End-to-end unpaired image denoising with conditional adversarial networks. In: Association for the Advancement of Artificial Intelligence (AAAI), vol. 34, pp. 4140–4149 (2020)

    Google Scholar 

  20. Jang, G., Lee, W., Son, S., Lee, K.M.: C2N: practical generative noise modeling for real-world denoising. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2350–2359 (2021)

    Google Scholar 

  21. Jeong, J., Shin, J.: Training GANs with stronger augmentations via contrastive discriminator. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  22. Kang, M., Park, J.: ContraGAN: contrastive learning for conditional image generation. In: Advances in Neural Information Processing Systems (NIPS), vol. 33, pp. 21357–21369. Curran Associates, Inc. (2020)

    Google Scholar 

  23. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing Systems (NIPS), vol. 33, pp. 18661–18673. Curran Associates, Inc. (2020)

    Google Scholar 

  24. Kim, D.W., Ryun Chung, J., Jung, S.W.: GRDN: grouped residual dense network for real image denoising and GAN-based real-world noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)

    Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  26. Lee, K.S., Tran, N.T., Cheung, N.M.: Infomax-GAN: improved adversarial image generation via information maximization and contrastive learning. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3942–3952 (2021)

    Google Scholar 

  27. Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for unknown corruption. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17452–17462 (2022)

    Google Scholar 

  28. Lin, H., Zhuang, Y., Huang, Y., Ding, X., Liu, X., Yu, Y.: Noise2Grad: extract image noise to denoise. In: Zhou, Z.H. (ed.) IJCAI, pp. 830–836. IJCAI (2021). https://doi.org/10.24963/ijcai.2021/115

  29. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  30. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  31. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1586–1595 (2017)

    Google Scholar 

  32. Salimans, T., et al.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (NIPS), vol. 29. Curran Associates, Inc. (2016)

    Google Scholar 

  33. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  34. Xu, J., Li, H., Liang, Z., Zhang, D., Zhang, L.: Real-world noisy image denoising: a new benchmark. arXiv preprint arXiv:1804.02603 (2018)

  35. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Yue, Z., Zhao, Q., Zhang, L., Meng, D.: Dual adversarial network: toward real-world noise removal and noise generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 41–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_3

    Chapter  Google Scholar 

  37. Zamir, S.W., et al.: CycleiSP: real image restoration via improved data synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Electronics Co., Ltd, and Samsung Research Funding Center of Samsung Electronics under Project Number SRFCIT1901-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9224 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, S., Kim, T.H. (2023). NoiseTransfer: Image Noise Generation with Contrastive Embeddings. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics