Skip to main content

UHD Underwater Image Enhancement via Frequency-Spatial Domain Aware Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 755 Accesses

Abstract

Currently, carrying ultra high definition (UHD) imaging equ- ipment to record rich environmental conditions in deep water has become a hot issue in underwater exploration. However, due to the poor light transmission in deep water spaces and the large number of impurity particles, UHD underwater imaging is often plagued by low contrast and blur. To overcome these challenges, we propose an efficient two-path model (UHD-SFNet) that recovers the color and the texture of an underwater blurred image in the frequency and the spatial domains. Specifically, the method consists of two branches: in the first branch, we use a bilateral enhancement pipeline that extracts the frequency domain information of a degraded image to reconstruct clear textures. In the pipeline, we embed 1D convolutional layers in the MLP-based framework to capture the local characteristics of the token sequence. In the second branch, we develop U-RSGNet to capture the color features of the image after Gaussian blurring to generate a feature map rich in color information. Finally, the extracted texture features are fused with the color features to produce a clear underwater image. In addition, to construct paired high-quality underwater image enhancement dataset, we propose UHD-CycleGAN with the help of domain adaptation to produce more realistic UHD synthetic images. Experimental results show that our algorithm outperforms existing methods significantly in underwater image enhancement on a single GPU with 24G RAM. Codes are available at https://github.com/wyw0112/UHD-SFNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGlamery, B.: A computer model for underwater camera systems. In: Ocean Optics VI, vol. 208, pp. 221–231 (1980)

    Google Scholar 

  2. Jaffe, J.S.: Computer modeling and the design of optimal underwater imaging systems. JOE 15(2), 101–111 (1990)

    Google Scholar 

  3. Akkaynak, D., Treibitz, T.: A revised underwater image formation model. In: CVPR, pp. 6723–6732 (2018)

    Google Scholar 

  4. Akkaynak, D., Treibitz, T., Shlesinger, T., Loya, Y., Tamir, R., Iluz, D.: What is the space of attenuation coefficients in underwater computer vision? In: CVPR, pp. 4931–4940 (2017)

    Google Scholar 

  5. Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. TIP 21(4), 1756–1769 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Drews, P.L., Nascimento, E.R., Botelho, S.S., Campos, M.F.M.: Underwater depth estimation and image restoration based on single images. CG &A 36(2), 24–35 (2016)

    Google Scholar 

  7. Li, C., Guo, J., Guo, C., Cong, R., Gong, J.: A hybrid method for underwater image correction. PRL 94, 62–67 (2017)

    Article  Google Scholar 

  8. Li, C., Anwar, S., Porikli, F.: Underwater scene prior inspired deep underwater image and video enhancement. PR 98, 107038 (2020)

    Google Scholar 

  9. Li, C., et al.: An underwater image enhancement benchmark dataset and beyond. TIP 29, 4376–4389 (2019)

    MATH  Google Scholar 

  10. Li, C., Anwar, S., Hou, J., Cong, R., Guo, C., Ren, W.: Underwater image enhancement via medium transmission-guided multi-color space embedding. TIP 30, 4985–5000 (2021)

    Google Scholar 

  11. Islam, M.J., Xia, Y., Sattar, J.: Fast underwater image enhancement for improved visual perception. RA-L 5(2), 3227–3234 (2020)

    Google Scholar 

  12. Jamadandi, A., Mudenagudi, U.: Exemplar-based underwater image enhancement augmented by wavelet corrected transforms. In: CVPRW, pp. 11–17 (2019)

    Google Scholar 

  13. Uplavikar, P.M., Wu, Z., Wang, Z.: All-in-one underwater image enhancement using domain-adversarial learning. In: CVPRW, pp. 1–8 (2019)

    Google Scholar 

  14. Mao, X., Liu, Y., Shen, W., Li, Q., Wang, Y.: Deep residual fourier transformation for single image deblurring. arXiv preprint arXiv:2111.11745 (2021)

  15. Qin, F., et al.: Blind image restoration with defocus blur by estimating point spread function in frequency domain. In: ICAIP, pp. 62–67 (2021)

    Google Scholar 

  16. Huo, F., Li, B., Zhu, X.: Efficient wavelet boost learning-based multi-stage progressive refinement network for underwater image enhancement. In: ICCV, pp. 1944–1952 (2021)

    Google Scholar 

  17. Tang, Y., et al.: An image patch is a wave: phase-aware vision MLP. In: CVPR, pp. 10935–10944 (2022)

    Google Scholar 

  18. Iqbal, K., Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H.: Enhancing the low quality images using unsupervised colour correction method. In: SMC, pp. 1703–1709 (2010)

    Google Scholar 

  19. Ghani, A.S.A., Isa, N.A.M.: Underwater image quality enhancement through integrated color model with rayleigh distribution. Appl. Soft Comput. 27, 219–230 (2015)

    Article  Google Scholar 

  20. Ghani, A.S.A., Isa, N.A.M.: Enhancement of low quality underwater image through integrated global and local contrast correction. Appl. Soft Comput. 37, 332–344 (2015)

    Article  Google Scholar 

  21. Ancuti, C., Ancuti, C.O., Haber, T., Bekaert, P.: Enhancing underwater images and videos by fusion. In: CVPR, pp. 81–88 (2012)

    Google Scholar 

  22. Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: ICIP, pp. 4572–4576 (2014)

    Google Scholar 

  23. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33(12), 2341–2353 (2010)

    Google Scholar 

  24. Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. RA-L 3(1), 387–394 (2017)

    Google Scholar 

  25. Gabiger-Rose, A., Kube, M., Weigel, R., Rose, R.: An FPGA-based fully synchronized design of a bilateral filter for real-time image denoising. TIE 61(8), 4093–4104 (2013)

    Google Scholar 

  26. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a laplacian pyramid translation network. In: CVPR, pp. 9392–9400 (2021)

    Google Scholar 

  27. Lin, S., Ryabtsev, A., Sengupta, S., Curless, B.L., Seitz, S.M., Kemelmacher-Shlizerman, I.: Real-time high-resolution background matting. In: CVPR, pp. 8762–8771 (2021)

    Google Scholar 

  28. Wang, T., et al.: Real-time image enhancer via learnable spatial-aware 3D lookup tables. In: ICCV, pp. 2471–2480 (2021)

    Google Scholar 

  29. Zheng, Z., Ren, W., Cao, X., Wang, T., Jia, X.: Ultra-high-definition image HDR reconstruction via collaborative bilateral learning. In: ICCV, pp. 4449–4458 (2021)

    Google Scholar 

  30. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. TOG 36(4), 1–12 (2017)

    Article  Google Scholar 

  31. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: ICML, pp. 933–941 (2017)

    Google Scholar 

  32. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)

  33. Berman, D., Treibitz, T., Avidan, S.: Diving into haze-lines: color restoration of underwater images. In: BMVC (2017)

    Google Scholar 

  34. Li, S., Liu, X., Jiang, R., Zhou, F., Chen, Y.: Dilated residual encode-decode networks for image denoising. JEI 27(6), 063005 (2018)

    Google Scholar 

  35. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. JOE 41(3), 541–551 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Reserach and Development Program of China (2019YFB1706900), National Natural Science Foundation of China (62176123), Fundamental Research Funds for the Central Universities (30920021131) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_0461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyi Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, Y., Zheng, Z., Jia, X. (2023). UHD Underwater Image Enhancement via Frequency-Spatial Domain Aware Network. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics