Skip to main content

A Case Study in Formal Analysis of System Requirements

  • Conference paper
  • First Online:
Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops (SEFM 2022)

Abstract

One of the goals of the 4SECURail project has been to demonstrate the benefits, limits, and costs of introducing formal methods in the system requirements definition process. This has been done, on an experimental basis, by applying a specific set of tools and methodologies to a case study from the railway sector. The paper describes the approach adopted in the project and some considerations resulting from the experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Radio Block Centre.

  2. 2.

    https://fmt.isti.cnr.it.

  3. 3.

    UMC is freely accessible online at http://fmt.isti.cnr.it/umc and a detailed description of the syntax can be found in http://fmt.isti.cnr.it/umc/DOCS/sdhelp.html.

References

  1. 4SECURail: Project Deliverable D2.1 (2020). https://www.4securail.eu/Documents.html

  2. 4SECURail: Deliverabled of WorkStream 1 (2022). https://zenodo.org/record/5807738

  3. 4SECURail: Project Deliverables (2022). https://www.4securail.eu/Documents.html

  4. 4SECURail: Translation Tools (2022). https://zenodo.org/record/5541350

  5. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Technol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/s10009-010-0145-y

    Article  Google Scholar 

  6. Basile, D., Fantechi, A., Rosadi, I.: Formal analysis of the UNISIG safety application intermediate sub-layer. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863, pp. 174–190. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-1_11

    Chapter  Google Scholar 

  7. ter Beek, M.H., et al.: Adopting formal methods in an industrial setting: the railways case. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 762–772. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_46

    Chapter  Google Scholar 

  8. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-checking approach for the analysis of abstract system properties. Sci. Comput. Program. 76(2), 119–135 (2011). https://doi.org/10.1016/j.scico.2010.07.002

    Article  MATH  Google Scholar 

  9. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: States and events in KandISTI. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not? LNCS, vol. 11200, pp. 110–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_8

    Chapter  Google Scholar 

  10. ter Beek, M.H., Gnesi, S., Mazzanti, F.: From EU projects to a family of model checkers. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 312–328. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_20

    Chapter  Google Scholar 

  11. Belli, D., Fantechi, A., et al.: The 4SECURail approach to formalizing standard interfaces between signalling systems components (2022). Paper Accepted as Poster Presentation at Transport Research Arena Conference (TRA). https://doi.org/10.5281/zenodo.7225869

  12. Bouwman, M., Luttik, B., van der Wal, D.: A formalisation of SysML state machines in mCRL2. In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 42–59. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0_3

    Chapter  Google Scholar 

  13. Broy, M., Cengarle, M.V.: UML formal semantics: lessons learned. Softw. Syst. Model. 10(4), 441–446 (2011). https://doi.org/10.1007/s10270-011-0207-y

    Article  Google Scholar 

  14. CADP: AUT format man page. https://cadp.inria.fr/man/aut.html

  15. CADP: bcgcomp format man page. https://cadp.inria.fr/man/bcg_cmp.html

  16. Champelovier, D., Clerc, X., et al.: Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.8) (2013). https://cadp.inria.fr/ftp/publications/cadp/Champelovier-Clerc-Garavel-et-al-10.pdf

  17. Clearsy: Atelier B. https://www.clearsy.com/outils/atelier-b/

  18. Dghaym, D., Dalvandi, M., Poppleton, M., Snook, C.: Formalising the hybrid ERTMS level 3 specification in iUML-B and Event-B. Int. J. Softw. Tools Technol. Transf. 22(3), 297–313 (2019). https://doi.org/10.1007/s10009-019-00548-w

    Article  Google Scholar 

  19. ERA: ERTMS Home Page. https://www.era.europa.eu/activities/european-rail-traffic-management-system-ertms

  20. ERA: UNISIG SUBSET 098 RBC-RBC Safe Communication Interface (2012)

    Google Scholar 

  21. ERA: UNISIG SUBSET 039 FIS for the RBC/RBC Handover (2015)

    Google Scholar 

  22. Eulynx: The Eulynx initiative. https://eulynx.eu/

  23. Fecher, H., Schönborn, J., Kyas, M., de Roever, W.-P.: 29 new unclarities in the semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280_5

    Chapter  Google Scholar 

  24. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools Technol. Transf. 15(2), 89–107 (2013). https://doi.org/10.1007/s10009-012-0244-z

    Article  MATH  Google Scholar 

  25. Groote, J.F., Keiren, J.J.A., Luttik, B., de Vink, E.P., Willemse, T.A.C.: Modelling and analysing software in mCRL2. In: Arbab, F., Jongmans, S.-S. (eds.) FACS 2019. LNCS, vol. 12018, pp. 25–48. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40914-2_2

    Chapter  Google Scholar 

  26. Grumberg, O., Meller, Y., Yorav, K.: Applying software model checking techniques for behavioral UML models. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 277–292. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_25

    Chapter  Google Scholar 

  27. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., van de Pol, J., dos Santos, O.M.: Automated verification of executable UML models. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_12

    Chapter  Google Scholar 

  28. Heinrich-Heine-Univ.: ProB Project Home Page. https://prob.hhu.de/

  29. Horizon 2020: Project AstRail. https://cordis.europa.eu/project/id/777561

  30. Horizon 2020: Project PerformingRail. https://cordis.europa.eu/project/id/101015416

  31. INRIA: CADP Web site. https://cadp.inria.fr

  32. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 395–414. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9_23

    Chapter  Google Scholar 

  33. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method. Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008). https://doi.org/10.1007/s10009-007-0063-9

    Article  Google Scholar 

  34. Liu, S., et al.: A formal semantics for complete UML state machines with communications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8_23

    Chapter  Google Scholar 

  35. Mazzanti, F., Belli, D.: The 4SECURail formal methods demonstrator. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds.) RSSRail 2022. LNCS, vol. 13294, pp. 149–165. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05814-1_11

    Chapter  Google Scholar 

  36. Mazzanti, F., Belli, D.: Formal modelling and initial analysis of the 4SECURail case study. In: Proceedings: Models for Formal Analysis of Real Systems (MARS). EPTCS 355, pp. 118–144 (2022). https://doi.org/10.4204/EPTCS.355.6

  37. Mazzanti, F., Belli, D.: Formal models of the 4SECURail project (2022). https://zenodo.org/record/6322392

  38. mCRL2: ltscompare man page. https://www.mcrl2.org/web/user_manual/tools/release/ltscompare.html

  39. mCRl2: Project Home Page. https://www.mcrl2.org/

  40. Ober, I., Graf, S., Ober, I.: Validation of UML models via a mapping to communicating extended timed automata. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 127–145. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6_9

    Chapter  Google Scholar 

  41. OMG: Unified Modeling Language, Version 2.5.1 (2017). https://www.omg.org/spec/UML/2.5.1

  42. OMG: Action Language for Foundational UML (Alf) (2018). https://www.omg.org/spec/ALF/1.1

  43. OMG: Semantics of a Foundational Subset for Executable UML Models (2018). https://www.omg.org/spec/SysML/1.6

  44. OMG: Precise Semantics of UML State Machines (2019). https://www.omg.org/spec/PSSM/1.0

  45. OMG: System Modeling Language version 1.6 (2019). https://www.omg.org/spec/SysML/1.6

  46. Pétin, J.F., Evrot, D., Morel, G., Lamy, P.: Combining SysML and formal methods for safety requirements verification. In: 22nd International Conference on Software & Systems Engineering and Their Applications, Paris, France (2010). https://hal.archives-ouvertes.fr/hal-00533311

  47. PTC: Windchill Expert Packages. https://www.ptc.com/en/products/windchill/expert-packages

  48. Shift2Rail: now Europe’srail. https://rail-research.europa.eu/

  49. Snook, C., Savicks, V., Butler, M.: Verification of UML models by translation to UML-B. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 251–266. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6_13

    Chapter  Google Scholar 

  50. SPIN: Project Home Page. https://spinroot.com/spin/whatispin.html

  51. UML-B: Project Home Page. https://www.uml-b.org/

  52. Univ. AUgsburg: HUGO Home Page. https://www.uni-augsburg.de/en/fakultaet/fai/informatik/prof/swtsse/hugo-rt/

  53. Univ. of Twente: Formasig Home Page. https://www.utwente.nl/en/eemcs/fmt//research/projects/formasig

  54. UPPAAL: Project Home Page. https://uppaal.org/

Download references

Acknowledgements

This work has been partially funded by the 4SECURail project (Shift2Rail GA 881775). The content of this paper reflects only the author’s view and the Shift2Rail Joint Undertaking is not responsible for any use that may be made of the included information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Mazzanti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belli, D., Mazzanti, F. (2023). A Case Study in Formal Analysis of System Requirements. In: Masci, P., Bernardeschi, C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds) Software Engineering and Formal Methods. SEFM 2022 Collocated Workshops. SEFM 2022. Lecture Notes in Computer Science, vol 13765. Springer, Cham. https://doi.org/10.1007/978-3-031-26236-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26236-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26235-7

  • Online ISBN: 978-3-031-26236-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics