Skip to main content

Integration of Human Factors for Assembly Systems of the Future

  • Chapter
  • First Online:
The Digital Twin of Humans

Abstract

Assembly is the final step of production and has to adapt to changing requirements. Produced parts are assembled into a product of higher complexity with defined functions within a determined time. Workers are the central actors in future cyber-physical assembly systems. They are crucial to the success of the entire system. There is a variety of methods and models for planning specific aspects of assembly systems. Examples include workstation design, assembly layout, and task assignment. In these approaches, individual characteristics and human factors are insufficiently considered. Within this chapter, an approach for the integration of human factors into cyber-physical assembly systems is proposed. This approach is an extension for planning methods and models that is meant to optimise the performance and cost of the assembly system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abubakar, M. I., & Wang, Q. (2019a) Integrating human factor decision components into a DES model. In 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 562–566). IEEE. https://doi.org/10.1109/IEA.2019.8714774

  • Abubakar, M. I., & Wang, Q. (2019b). Key human factors and their effects on human centered assembly performance. International Journal of Industrial Ergonomics, 69, 48–57. https://doi.org/10.1016/j.ergon.2018.09.009

  • Adolph, S., Tisch, M., & Metternich, J. (2014). Challenges and approaches to competency development for future production. Journal of International Scientific Publications Educational Alternatives, 12(1), 1001–1010.

    Google Scholar 

  • Anzanello, M. J., & Fogliatto, F. S. (2006). Learning curve modelling of work assignment in mass customized assembly lines. International Journal of Production Research, 45(13), 2919–2938. https://doi.org/10.1080/00207540600725010

  • Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5), 573–583. https://doi.org/10.1016/j.ergon.2011.05.001

  • Argyrou, A., Giannoulis, C., Papakostas, N., & Chryssolouris, G. (2016). A uniform data model for representing symbiotic assembly stations. Procedia CIRP, 44, 85–90. https://doi.org/10.1016/j.procir.2016.02.087

  • Arnold, W. (Ed.). (1997). Lexikon der Psychologie. Augsburg: Bechtermünz.

    Google Scholar 

  • Badke-Schaub, P., Hofinger, G., & Lauche, K. (2012). Human factors. Dordrecht: Springer.

    Book  Google Scholar 

  • Bailey, C. D. (1989). Forgetting and the learning curve: A laboratory study. Management Science, 35(3), 340–352. https://doi.org/10.1287/mnsc.35.3.340

  • Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing. European Journal of Operational Research, 168(3), 694–715. https://doi.org/10.1016/j.ejor.2004.07.023

  • Betge, D. (Ed.). (2006). Koordination in advanced planning and scheduling-systemen (1st edn.) Produktion und Logistik, DUV Deutscher Universitäts-Verlag, s.l. https://doi.org/10.1007/978-3-8350-9041-5

  • Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line balancing problems. European Journal of Operational Research, 183(2), 674–693. https://doi.org/10.1016/j.ejor.2006.10.010

  • Brauner, P., & Ziefle, M. (2015). Human factors in productions systems. Lecture Notes in Production EngineeringIn C. Brecher (Ed.), Advances in production technology (pp. 187–199). Cham: Springer Open.

    Chapter  Google Scholar 

  • Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, N. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An industry 4.0 perspective. International Journal of Science, Engineering and Technology, 8, 37–44. https://doi.org/10.5281/zenodo.1336426

  • Bullinger, H. J., & Ammer, D. (Eds.). (1986). Systematische Montageplanung: Handbuch für die Praxis. München: Hanser. ISBN 978-3-446-14606-8.

    Google Scholar 

  • Chatti, S., Laperrière, L., & Reinhart, G. (2019). CIRP encyclopedia of production engineering (2nd ed.). Berlin: Springer. https://doi.org/10.1007/978-3-642-20617

  • Dombrowski, U., Riechel, C., & Schulze, S. (2011). Enforcing employees participation in the factory planning process. In 2011 International Symposium on Assembly and Manufacturing (pp. 1–6). Piscataway, NJ: IEEE. https://doi.org/10.1109/ISAM.2011.5942337

  • Domschke, W., Drexl, A., Klein, R., & Scholl, A. (2015). Einführung in operations research (9th edn.). Berlin and Heidelberg: Springer Gabler. https://doi.org/10.1007/978-3-662-48216-2

  • Ege, Y., Azizoglu, M., & Ozdemirel, N. E. (2009). Assembly line balancing with station paralleling. Computers & Industrial Engineering, 57(4), 1218–1225. https://doi.org/10.1016/j.cie.2009.05.014

  • Eversheim, W., & Schuh, G. (1999). Produktion und Management 3: Gestaltung von Produktionssystemen. Berlin and Heidelberg: Hütte, Springer. https://doi.org/10.1007/978-3-642-58399-5

  • Feldmann, C. (1997). Eine Methode für die integrierte rechnergestützte Montageplanung, Forschungsberichte iwb, Berichte aus dem Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München (Vol. 104). Berlin and Heidelberg: Springer. https://doi.org/10.1007/978-3-662-06845-8

  • Galaske, N. R. (2019). Modellierung von Zusammenbaubedingungen zur Reihenfolgebildung im cyber-physischen Montagesystem, Forschungsberichte aus dem Fachgebiet Datenverarbeitung in der Konstruktion (1st ed., Vol. 63). Herzogenrath: Shaker. ISBN 978-3-8440-6523-7

    Google Scholar 

  • Geisberger, E., & Broy, M. (2012). agendaCPS: Integrierte Forschungsagenda Cyber-Physical Systems, acatech STUDIE, März 2012 (Vol. 1). Berlin and Heidelberg: Springer. https://doi.org/10.1007/978-3-642-29099-2

  • Globerson, S., Levin, N., & Shtub A. (1989). The impact of breaks on forgetting when performing a repetitive task. IIE Transactions, 21(4), 376–381. https://doi.org/10.1080/07408178908966244

  • Goebel, C., & Zwick, T. (2009). Age and productivity—Evidence from linked employer employee data. Labor: Personnel Economics. https://ftp.zew.de/pub/zew-docs/dp/dp09020.pdf

  • Graessler, I., & Poehler, A. (2019). Human-centric design of cyber-physical production systems. Procedia CIRP, 84, 251–256. https://doi.org/10.1016/j.procir.2019.04.199

  • Gräßler, I., & Pöhler, A. (2017). Implementation of an adapted holonic production architecture. Procedia CIRP, 63, 138–143. https://doi.org/10.1016/j.procir.2017.03.176

  • Gräßler, I., Pöhler, A., & Pottebaum, J. (2016). Creation of a learning factory for cyber physical production systems. Procedia CIRP, 54, 107–112. https://doi.org/10.1016/j.procir.2016.05.063

  • Gräßler, I., Roesmann, D., & Pottebaum, J. (2020a). Entwicklung eines Prüfstands für die Bewertung von kompetenzbildenden Assistenzsystemen in cyber-physischen Produktionssystemen. In Digitale Arbeit, digitaler Wandel, digitaler Mensch? (p. B.6.4). Dortmund: GfA-Press. ISBN 978-3-936804-27.

    Google Scholar 

  • Gräßler, I., Roesmann, D., & Pottebaum, J. (2020b). Traceable learning effects by use of digital adaptive assistance in production. In Proceedings of the 10th Conference on Learning Factories (pp. 479–484). Elsevier. https://doi.org/10.1016/j.promfg.2020.04.058

  • Gräßler, I., Roesmann, D., Cappello, C., & Steffen, E. (2021). Skill-based worker assignment in a manual assembly line. Procedia CIRP, 100, 433–438. https://doi.org/10.1016/j.procir.2021.05.100

  • Gräßler, I., Wiechel, D., & Roesmann, D. (2021). Integrating human factors in the model based development of cyber-physical production systems. Procedia CIRP, 100, 518–523. https://doi.org/10.1016/j.procir.2021.05.113

  • Gräßer, I., & Pöhler, A. (2018). Intelligent devices in a decentralized production system concept. Procedia CIRP, 67, 116–121. https://doi.org/10.1016/j.procir.2017.12.186, www.sciencedirect.com/science/article/pii/S2212827117311289

  • Gräßler, I., Pöhler, A., & Hentze, J. (2017). Decoupling of product and production development in flexible production environments. Procedia CIRP, 60, 548–553. https://doi.org/10.1016/j.procir.2017.01.040

  • Gräßler, I., Roesmann, D., & Pottebaum, J. (2021). Model based integration of human characteristics in production systems: A literature survey. Procedia CIRP, 99, 57–62. https://doi.org/10.1016/j.procir.2021.03.010, www.sciencedirect.com/science/article/pii/S2212827121002663

  • Grosse, E. H. (2015). Human factors in order picking systems: A framework for integrating human factors in order picking planning models with an in-depth analysis of learning effects. Dissertation, Technische Universität Darmstadt, Darmstadt. ISBN 978-3-944325-05-7.

    Google Scholar 

  • Grosse, E. H., Glock, C. H., Jaber, M. Y., & Neumann, W. P. (2015). Incorporating human factors in order picking planning models: Framework and research opportunities. International Journal of Production Research, 53(3), 695–717. https://doi.org/10.1080/00207543.2014.919424

  • Grunwald, S. (2002). Methode zur Anwendung der flexiblen integrierten Produktentwicklung und Montageplanung: Zugl.: München, Technical University, Dissertation (2001). Forschungsberichte/IWB (Vol. 159). München: Utz. ISBN 978-3-8316-0095-3.

    Google Scholar 

  • Hammerstingl, V., & Reinhart, G. (2018). Skills in assembly.

    Google Scholar 

  • Hochdörffer, J., Hedler, M., & Lanza, G. (2018). Staff scheduling in job rotation environments considering ergonomic aspects and preservation of qualifications. Journal of Manufacturing Systems, 46, 103–114. https://doi.org/10.1016/j.jmsy.2017.11.005

  • Hozdic, E. (2015). Smart factory for industry 4.0: A review. International Journal of Modern Manufacturing Technologies, 7(1), 28–35. ISSN 2067–3604.

    Google Scholar 

  • Jaber, M. (2006). Learning and forgetting models and their applications. In A. B. Badiru (Ed.), Handbook of industrial and systems engineering, Industrial innovation (Vol. 20052471, pp. 30–1–30–27). Boca Raton: CRC Taylor & Francis. https://doi.org/10.1201/9781420038347.ch30

  • Jaber, M. Y., & Bonney, M. (1997). A comparative study of learning curves with forgetting. Applied Mathematical Modelling, 21(8), 523–531. https://doi.org/10.1016/S0307-904X(97)00055-3

  • Jaber, M. Y., & Kher, H. V. (2004). Variant versus invariant time to total forgetting: The learn-forget curve model revisited. Computers & Industrial Engineering, 46(4), 697–705. https://doi.org/10.1016/j.cie.2004.05.006

  • Katiraee, N., Battini, D., Battaia, O., & Calzavara, M. (2019). Human diversity factors in production system modelling and design: State of the art and future researches. IFAC-PapersOnLine, 52(13), 2544–2549. https://doi.org/10.1016/j.ifacol.2019.11.589

  • Katiraee, N., Calzavara, M., Finco, S., Battini, D., & Battaïa, O. (2021). Consideration of workers’ differences in production systems modelling and design: State of the art and directions for future research. International Journal of Production Research, 59(11), 3237–3268. https://doi.org/10.1080/00207543.2021.1884766

  • Klein, R., & Scholl, A. (2012). Planung und Entscheidung: Konzepte, Modelle und Methoden einer modernen betriebswirtschaftlichen Entscheidungsanalyse. Vahlens Handbücher der Wirtschafts- und Sozialwissenschaften, München. ISBN 978-3-8006-3884-0

    Google Scholar 

  • Kratzsch, S. (2000). Prozess- und Arbeitsorganisation in Fließmontagesystemen Braunschweig, Technical University, Dissertation (2000). Schriftenreihe des IWF. Essen: Vulkan-Verl. ISBN 978-3-8027-8654-9.

    Google Scholar 

  • Kriengkorakot, N., & Pianthong, N. (2007). The assembly line balancing problem: Review articles. Engineering and Applied Science Research, 34(2), 133–140.

    Google Scholar 

  • Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1–2), 83–97. https://doi.org/10.1002/nav.3800020109

  • Lanza, G., Ferdows, K., Kara, S., Mourtzis, D., Schuh, G., Váncza, J., Wang, L., & Wiendahl, H. P. (2019). Global production networks: Design and operation. CIRP Annals, 68(2), 823–841. https://doi.org/10.1016/j.cirp.2019.05.008

  • Lotter, B. (1992). Wirtschaftliche Montage: Ein Handbuch für Elektrogerätebau und Feinwerktechnik (2nd ed.). Düsseldorf: VDI-Verl. ISBN 978-3184007096.

    Google Scholar 

  • Lotter, B. (2012). Einführung. In B. Lotter & H. P. Wiendahl (Eds.), Montage in der industriellen Produktion (pp. 1–8). Berlin, Heidelberg: VDI-Buch, Springer. https://doi.org/10.1007/3-540-36669-5

  • Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical systems in manufacturing. CIRP Annals, 65(2), 621–641. https://doi.org/10.1016/j.cirp.2016.06.005

  • Müller, R., Hörauf, L., Speicher, C., & Obele, J. (2019). Communication and knowledge management platform for concurrent product and assembly system development. Procedia Manufacturing, 28, 107–113. https://doi.org/10.1016/j.promfg.2018.12.018

  • Nembhard, D. A., & Uzumeri, M. V. (2000). Experiential learning and forgetting for manual and cognitive tasks. International Journal of Industrial Ergonomics, 25(4), 315–326. https://doi.org/10.1016/S0169-8141(99)00021-9

  • Neumann, K., & Morlock, M. (2004). Operations research (2nd ed.). München: Hanser.

    MATH  Google Scholar 

  • Neumann, P. W., & Dul, J. (2010). Human factors: Spanning the gap between OM and HRM. International Journal of Operations & Production Management, 30(9), 923–950. https://doi.org/10.1108/01443571011075056

  • Neumann, W. P., Winkelhaus, S., Grosse, E. H., & Glock, C. H. (2021). Industry 4.0 and the human factor—A systems framework and analysis methodology for successful development. International Journal of Production Economics, 233, 107992. https://doi.org/10.1016/j.ijpe.2020.107992

  • Ostermeier, F. F. (2020). The impact of human consideration, schedule types and product mix on scheduling objectives for unpaced mixed-model assembly lines. International Journal of Production Research, 58(14), 4386–4405. https://doi.org/10.1080/00207543.2019.1652780

  • Patron, C. (2005) Konzept für den Einsatz von Augmented Reality in der Montageplanung München, Technical University, Dissertation (2004). Forschungsberichte iwb / Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München (Vol. 190). München: Utz. ISBN 978-3-8316-0474-6.

    Google Scholar 

  • Pundir, P. S., Porwal, S. K., & Singh, B. P. (2015). A new algorithm for solving linear bottleneck assignment problem. Journal of Institute of Science and Technology, 20(2), 101–102. https://doi.org/10.3126/jist.v20i2.13961

  • REFA. (1990). Planung und Gestaltung komplexer Produktionssysteme, Methodenlehre der Betriebsorganisation, vol / REFA, Verband für Arbeitsstudien und Betriebsorganisation (2nd ed.). München: Hanser. ISBN 978-3446159679.

    Google Scholar 

  • Schuh, G., & Stich, V. (Eds.). (2012). Produktionsplanung und -steuerung (4th ed.). Berlin and Heidelberg: VDI-Buch, Springer Vieweg.

    Google Scholar 

  • Sgarbossa, F., Grosse, E. H., Neumann, W. P., Battini, D., & Glock, C. H. (2020). Human factors in production and logistics systems of the future. Annual Reviews in Control, 49, 295–305. https://doi.org/10.1016/j.arcontrol.2020.04.007

  • Shalin, V. L., Prabhu, G. V., & Helander, M. G. (1996). A cognitive perspective on manual assembly. Ergonomics, 39(1), 108–127. https://doi.org/10.1080/00140139608964438

  • Shephard, R. J. (2000). Aging and productivity: Some physiological issues. International Journal of Industrial Ergonomics, 25(5), 535–545. https://doi.org/10.1016/S0169-8141(99)00036-0

  • Sikström, S., & Jaber, M. Y. (2002). The power integration diffusion model for production breaks. Journal of Experimental Psychology: Applied, 8(2), 118–126. https://doi.org/10.1037//1076-898X.8.2.118

  • Stinson, M. R., Müller, F. H., Korte, D., & Wehking, K. H. (2016). Lernkurven in manuellen person-zur-ware-kommissioniersystemen (leikom): Abschlussbericht. https://www.bvl.de/files/1951/2125/2131/2133/Abschlussbericht_LeiKom.pdf

  • Stoessel, C., Wiesbeck, M., Stork, S., Zaeh, M. F., & Schuboe A. (2008). Towards optimal worker assistance: Investigating cognitive processes in manual assembly. Manufacturing systems and technologies for the new frontier (pp. 245–250). s.l.: Springer Verlag London Limited. https://doi.org/10.1007/978-1-84800-267-8_50

  • Strang, D. (2016). Kommunikationsgesteuerte cyber-physische Montagemodelle. Dissertation, Technische Universität Darmstadt, Darmstadt. ISBN 978-3-8440-4594-9.

    Google Scholar 

  • Strang, D., & Anderl, R. (2014). Assembly process driven component data model in cyber-physical production systems. In Proceedings of the World Congress on Engineering and Computer Science (Vol. 2). ISBN 978-988-19253-7-4.

    Google Scholar 

  • Ullrich, G. (1995). Wirtschaftliches Anlernen in der Serienmontage—Ein Beitrag zur Lernkurventheorie. Dissertation, Gerhard-Mercator-Universität Duisburg, Duisburg. ISBN 978-3-8265-0868-4.

    Google Scholar 

  • Verein Deutscher Ingenieure. (2019). VDI 2221: Design of technical products and systems—Model of product design.

    Google Scholar 

  • Verein Deutscher Ingenieure. (2020). VDI/VDE 2206: Development of cyber-physical mechatronic systems (CPMS).

    Google Scholar 

  • Wilkowska, W., & Ziefle, M. (2013). User diversity as a challenge for the integration of medical technology into future smart home environments (pp 553–582). https://doi.org/10.4018/978-1-4666-2770-3.ch028

  • Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4), 122–128. https://doi.org/10.2514/8.155

Download references

Acknowledgements

Daniel Roesmann and Iris Gräßler are members of the research programme ‘Design of Flexible Work Environments—Human-Centric Use of Cyber-Physical Systems in Industry 4.0’, which is supported by the North Rhine-Westphalian funding scheme ‘Forschungskolleg’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Roesmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roesmann, D., Gräßler, I. (2023). Integration of Human Factors for Assembly Systems of the Future. In: Gräßler, I., Maier, G.W., Steffen, E., Roesmann, D. (eds) The Digital Twin of Humans. Springer, Cham. https://doi.org/10.1007/978-3-031-26104-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26104-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26103-9

  • Online ISBN: 978-3-031-26104-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics