Skip to main content

Heat Transfer Adhesion Factor on Metal Surfaces

  • Conference paper
  • First Online:
Trends in Artificial Intelligence and Computer Engineering (ICAETT 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 619))

  • 315 Accesses

Abstract

This document contains the technical analysis of the detailed engineering of the design characteristics of a curing oven for metallic materials. The curing oven has a production capacity of one thousand grams/hour, which will be distributed in a 100% capacity on the metallic surface. The design process of the resistance oven is complemented with the multi-criteria selection matrices according to the Topsis method and the CFD simulation of heat transfer that generates the analysis of meshing and temperature ranges, by means of which an oven with a modern and functional design that meets the technical and environmental standards is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, J.W., Chun, W.P., Oh, S.H., Lee, K.J., Kim, S.I.: Experimental studies on a combined near infrared (NIR) curing system with a convective oven. Prog. Org. Coat. 91, 39–49 (2016). https://doi.org/10.1016/j.porgcoat.2015.11.004

    Article  Google Scholar 

  2. Collanqui Yana, B.S.: Proceso de secado de pinturas en horno tipo cabina para acabado de muebles metálicos. Universidad Nacional Del Altiplano (2010). http://repositorio.unap.edu.pe/handle/UNAP/10463

  3. Dadkhah, M., Ruffatto, D., Zhao, Z., Spenko, M.: Increasing adhesion via a new electrode design and improved manufacturing in electrostatic/microstructured adhesives. J. Electrostat. 91, 48–55 (2018). https://doi.org/10.1016/j.elstat.2017.12.005

    Article  Google Scholar 

  4. Felipe, J., Ramirez, E.: Estudio de factibilidad para renovación de tecnologia en hornos de curado de pintura electrostatica en la industria de elevadores (2009). Universidad EAFIT. https://repository.eafit.edu.co/handle/10784/4353

  5. Glick, N., Shareef, I.: Optimization of electrostatic powder coat cure oven process: a capstone senior design research project. Procedia Manuf. 34, 1018–1029 (2019). https://doi.org/10.1016/j.promfg.2019.06.093

    Article  Google Scholar 

  6. Harrison, N.R., Luckey, S.G., Cappuccilli, B., Kridli, G.: Paint Bake Influence on AA7075 and AA7085, 28 March 2017. https://doi.org/10.4271/2017-01-1265

  7. Hern, J., Su, M.: Efecto de la composición química del baño en la microestructura y resistencia a la corrosión de los recubrimientos de zinc por inmersión en caliente: Una revisión Effect of Chemical Bath Composition on Microstructure and Corrosion Resistance of Zinc Coat, pp. 40–52 (2020)

    Google Scholar 

  8. Incropera, F., Dewit, D.: Fundamentals of Heat and Mass Transfer. In: BMC Public Health, Seventh Ed., vol. 5 (2017).

    Google Scholar 

  9. Luddey, J., Arévalo, M., Pérez-muñoz, D., Millan, A.R.: Resistencia a la corrosión en ambiente salino de un acero al carbono recubierto con aluminio por rociado térmico y pintura poli aspártica Corrosion resistance in saline environment of a carbon steel coated with aluminum by thermal spray and painting poly. 30(1), 21–31 (2016)

    Google Scholar 

  10. Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y., Abraham, J.P.: Handbook of Numerical Heat Transfer: Second Edition. Handbook of Numerical Heat Transfer: Second Edition, pp. 1–968 (2009). https://doi.org/10.1002/9780470172599

  11. Niamsuwan, S., Kittisupakorn, P., Suwatthikul, A.: Enhancement of energy efficiency in a paint curing oven via CFD approach: case study in an air-conditioning plant. Appl. Energy 156, 465–477 (2015). https://doi.org/10.1016/j.apenergy.2015.07.041

    Article  Google Scholar 

  12. Noon, W.B.: Industrial painting techniques. In: Beadle, J.D. (ed.) Product Treatment & Finishing. MEE, pp. 143–150. Macmillan Education UK, London (1972). https://doi.org/10.1007/978-1-349-01203-9_17

    Chapter  Google Scholar 

  13. Rico, Y., Carrasquero, E.: Efecto de la composición química en el comportamiento mecánico de recubrimientos galvanizados por inmersión en caliente: una revisión The Effect of Chemical Composition on Mechanical Behavior Of Galvanized Coatings By Hot Dip: A Review. Revista de Ciencia y Tecnología 30–39 (2017)

    Google Scholar 

  14. Ortega Sánchez, G.F., Fernando, G.: Diseño, construcción e implementación de un prototipo de un horno de secado (curado) de pintura automotriz y pruebas de pintura en las probetas al final del proceso (2016). http://192.188.51.77/handle/123456789/14140

  15. Pérez Domínguez, L., Macías García, J., Sánchez Mojica, K., Luviano Cruz, D.: Comparación Método multi-criterio TOPSIS y MOORA para la optimización de un proceso de inyección de plástico. Mundo FESC 14(14), 98–105 (2017)

    Google Scholar 

  16. Piratoba, U., Vera, E., Ortiz, C.: Superficial, Electrochemical and Compositional Characterization of Zinc Nickel Electrocoatings ELECTROCOATINGS, vol. 75 (2008). https://revistas.unal.edu.co/index.php/dyna/article/view/1782

  17. Power, T.: (n.d.). Hornos de curado para pintura electrostática. https://powdertronic.com/hornos-de-curado-para-pintura-electrostatica-2/. Accessed 12 April 2020

  18. Rodríguez, G.: (n.d.). Recubrimientos: No escatime en la preparación de las superfi cies. Metal Actual, pp. 35–39

    Google Scholar 

  19. Sakundarini, N., Taha, Z., Abdul-Rashid, S.H., Ghazila, R.A.R.: Optimal multi-material selection for lightweight design of automotive body assembly incorporating recyclability. Mater. Des. 50, 846–857 (2013). https://doi.org/10.1016/j.matdes.2013.03.085

    Article  Google Scholar 

  20. Uribe, C.L.: Pintura en Polvo Un recubrimiento ecológico y eficiente. Metal Actual 9, 25–31 (2008). http://www.metalactual.com/revista/9/pintura_en_polvo.pdf

  21. Valença, D.P., Alves, K.G.B., De Melo, C.P., Bouchonneau, N.: Study of the efficiency of polypyrrole/ZnO nanocomposites as additives in anticorrosion coatings. Mater. Res. 18(Suppl 2), 273–278 (2015). https://doi.org/10.1590/1516-1439.371614

    Article  Google Scholar 

  22. Yamabe, H.: Electrostatic painting. J. Jpn. Soc. Colour Mater. 73(10), 512–516 (2000). https://doi.org/10.4011/shikizai1937.73.512

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paúl Caza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caza, P., Rodrigo, D., López, V., Pamela, V. (2023). Heat Transfer Adhesion Factor on Metal Surfaces. In: Botto-Tobar, M., Gómez, O.S., Rosero Miranda, R., Díaz Cadena, A., Luna-Encalada, W. (eds) Trends in Artificial Intelligence and Computer Engineering. ICAETT 2022. Lecture Notes in Networks and Systems, vol 619. Springer, Cham. https://doi.org/10.1007/978-3-031-25942-5_37

Download citation

Publish with us

Policies and ethics