Skip to main content

Neglect-Zero Effects in Dynamic Semantics

  • Conference paper
  • First Online:
Dynamics in Logic and Language (TLLM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13524))

Included in the following conference series:

  • 177 Accesses

Abstract

The article presents a bilateral update semantics for epistemic modals which captures their discourse dynamics [54] as well as their potential to give rise to fc inferences [58]. The latter are derived as neglect-zero effects as in [3]. Neglect-zero is a tendency in human cognition to disregard structures that verify sentences by virtue of an empty witness set. The upshot of modelling the neglect-zero tendency in a dynamic setting is a notion of dynamic logical consequence which makes interesting predictions concerning possible divergences between everyday and logico-mathematical reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Among the exceptions to this claim is [25]. See [3] for a comparison.

  2. 2.

    Consider approaches in the grammatical tradition. Dual Prohibition cases are not derived directly but are explained by appealing to variations of the Strongest Meaning Hypothesis [17]. To account for wide scope fc inferences, which again cannot be generated by (recursive) applications of grammatical exhaustification, different strategies must be employed (see [9, 10]). As for the case of double negation fc, as discussed in detail in [26], pages 147–149, by recursive exhaustification only we cannot capture the so-called all-others-free-choice inference displayed in (14). Inclusion-based grammatical accounts [9, 10], given some additional assumptions about alternatives, can derive the inference for ‘exactly one’ sentences but need further modifications to account for similar readings in the case of sentences using ‘exactly two’ or higher. In a logic-based account like BSML, the all-others-free-choice reading in all these variants can be captured simply by validating dual prohibition (\(\lnot \Diamond (\alpha \vee \beta ) \leadsto \lnot \Diamond \alpha \wedge \lnot \Diamond \beta \)) and double negation fc (\(\lnot \lnot \Diamond (\alpha \vee \beta ) \leadsto \Diamond \alpha \wedge \Diamond \beta \)). The former allows us to derive the blue part in the inference below and the latter the red part:

    1. (i)

         

         

    .

  3. 3.

    For a proof-theory of BSML and related systems see [8].

  4. 4.

    By assuming a non-indisputable accessibility relation we can also account for the lack of fc inference in the following arguably wide scope disjunction cases discussed in [41]:

    1. (i)

         a.    It is OK for John to have ice-cream or it is OK for him to have cake.

         b.    It’s conceivable that she will call or it’s conceivable that she will write.

    .

  5. 5.

    This conjecture needs to be qualified. We do engage with zero-models in our daily life, for example when interpreting sentences with downward entailing quantifiers which can only be verified by zero-models, e.g., I have zero ideas of how to prove this or I went to the store to buy fish, but they didn’t have any, so we’ll have no fish for dinner tonight. Downward entailing quantifiers (no/zero) however are more costly to process than their upward entailing counterparts (some), a fact which can be taken to confirm the cognitive difficulty of engaging with zero-models.

  6. 6.

    It is worth mentioning that this is only one of the notions of logical consequence discussed in [54]. In fact, [54] eventually adopts a version which does not quantify over states.

  7. 7.

    The language of BiUS allows Boolean operations on \(\Diamond \)-formulas in contrast to Veltman’s \(L_{US}\), which precluded iteration and embedding of the \(\Diamond \)-operator. Because of this restriction, US validated idempotence (\(s[\phi ]=s[\phi ][\phi ]\)) and monotonicity (\(s\subseteq t \) implies \(s[\phi ] \subseteq t[\phi ]\)), which instead are not generally valid in BiUS. The adoption of a more liberal language is motivated by our linguistic goals. For example we want to explain wide scope free choice and the interpretation of might under negation. Some of our results however will depend on idempotence and monotonicity and, therefore, will only be valid for a fragment of the language.

  8. 8.

    Proofs are in appendix. See also Fig. 3 for illustrations.

  9. 9.

    Notice that Modal disjunction and Negation 1 only hold for \(\alpha \) and \(\beta \) of the restricted language \(L_{US}\). Counterexamples in the unrestricted \(L_{BiUS}\) involve formulas which violate idempotence, such as epistemic contradictions. E.g., \(|(p \wedge \Diamond \lnot p) \vee p| ^+ \not \models \Diamond (p \wedge \Diamond \lnot p) \) (counterexample to Modal Disjunction), and \(|\lnot (\lnot (p \wedge \Diamond \lnot p) \vee \lnot p)| ^+ \not \models \lnot \lnot (p \wedge \Diamond \lnot p) \) (counterexample to Negation 1).

  10. 10.

    Proof: \(s[\lnot \lnot \phi ]= s[\lnot \phi ]^r= s[\phi ]\).

References

  1. Aloni, M.: Conceptual covers in dynamic semantics. In: Cavedon, L., Blackburn, P., Braisby, N., Shimojima, A. (eds.) Logic, Language and Computation, vol. III. CSLI, Stanford (2000)

    Google Scholar 

  2. Aloni, M.: Free choice, modals, and imperatives. Nat. Lang. Semant. 15, 65–94 (2007). https://doi.org/10.1007/s11050-007-9010-2

    Article  Google Scholar 

  3. Aloni, M.: Logic and conversation: The case of free choice. Semant. Pragmatics 15(5), 1–39 (2022). https://doi.org/10.3765/sp.15.5

    Article  Google Scholar 

  4. Aloni, M., van Ormondt, P.: Modified numerals and split disjunction: the first-order case (2021). Manuscript, ILLC, University of Amsterdam

    Google Scholar 

  5. Aloni, M., Port, A.: Epistemic indefinites crosslinguistically. In: The Proceedings of NELS 40 (2010)

    Google Scholar 

  6. Alonso-Ovalle, L.: Disjunction in alternative semantics. Ph.D. thesis, University of Massachusetts, Amherst (2006)

    Google Scholar 

  7. Alonso-Ovalle, L., Menéndez-Benito, P.: Epistemic Indefinites. Oxford University Press, Oxford (2015)

    Book  Google Scholar 

  8. Anttila, A.: The logic of free choice. Axiomatizations of state-based modal logics. Master’s thesis, ILLC, University of Amsterdam (2021)

    Google Scholar 

  9. Bar-Lev, M.E.: Free choice, homogeneity, and innocent inclusion. Ph.D. thesis, Hebrew University of Jerusalem (2018)

    Google Scholar 

  10. Bar-Lev, M.E., Fox, D.: Free choice, simplification, and innocent inclusion. Nat. Lang. Semant. 28, 175–223 (2020). https://doi.org/10.1007/s11050-020-09162-y

    Article  Google Scholar 

  11. Barker, C.: Free choice permission as resource sensitive reasoning. Semant. Pragmatics 3(10), 1–38 (2010)

    Google Scholar 

  12. Bott, O., Schlotterbeck, F., Klein, U.: Empty-set effects in quantifier interpretation. J. Semant. 36, 99–163 (2019)

    Article  Google Scholar 

  13. Chemla, E.: Universal implicatures and free choice effects: experimental data. Semant. Pragmatics 2(2), 1–33 (2009)

    Google Scholar 

  14. Chemla, E., Bott, L.: Processing inferences at the semantics/pragmatics frontier: disjunctions and free choice. Cognition 130(3), 380–396 (2014)

    Article  Google Scholar 

  15. Chierchia, G., Fox, D., Spector, B.: The grammatical view of scalar implicatures and the relationship between semantics and pragmatics. In: Maienborn, C., von Heusinger, K., Portner, P. (eds.) Semantics. An International Handbook of Natural Language Meaning. de Gruyter (2011)

    Google Scholar 

  16. Coppock, E., Brochhagen, T.: Raising and resolving issues with scalar modifiers. Semant. Pragmatics 6(3), 1–57 (2013)

    Google Scholar 

  17. Dalrymple, M., Kanazawa, M., Kim, Y., Mchombo, S., Peters, S.: Reciprocal expressions and the concept of reciprocity. Linguist. Philos. 21(2), 159–210 (1998). https://doi.org/10.1023/A:1005330227480

    Article  Google Scholar 

  18. Dayal, V.: Any as inherently modal. Linguist. Philos. 21, 433–476 (1998). https://doi.org/10.1023/A:1005494000753

    Article  Google Scholar 

  19. van der Does, J., Groeneveld, W., Veltman, F.: An update on “Might". J. Log. Lang. Inf. 6, 361–380 (1997). https://doi.org/10.1023/A:1008219821036

    Article  MathSciNet  MATH  Google Scholar 

  20. Fox, D.: Free choice and the theory of scalar implicatures. In: Sauerland, U., Stateva, P. (eds.) Presupposition and Implicature in Compositional Semantics, pp. 71–120. Palgrave MacMillan, Hampshire (2007)

    Chapter  Google Scholar 

  21. Franke, M.: Quantity implicatures, exhaustive interpretation, and rational conversation. Semant. Pragmatics 4(1), 1–82 (2011)

    Google Scholar 

  22. Fusco, M.: Sluicing on free choice. Semant. Pragmatics 12(20), 1–20 (2019). https://doi.org/10.3765/sp.12.20

    Article  Google Scholar 

  23. Geurts, B.: Entertaining alternatives: disjunctions as modals. Nat. Lang. Semant. 13, 383–410 (2005). https://doi.org/10.1007/s11050-005-2052-4

    Article  Google Scholar 

  24. Geurts, B., Nouwen, R.: At least et al.: the semantics of scalar modifiers. Language 83(3), 533–559 (2007)

    Google Scholar 

  25. Goldstein, S.: Free choice and homogeneity. Semant. Pragmatics 12(23), 1–47 (2019). https://doi.org/10.3765/sp.12.23

    Article  Google Scholar 

  26. Gotzner, N., Romoli, J., Santorio, P.: Choice and prohibition in non-monotonic contexts. Nat. Lang. Semant. 28(2), 141–174 (2020). https://doi.org/10.1007/s11050-019-09160-9

    Article  Google Scholar 

  27. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics, Volume 3: Speech Acts, pp. 41–58. Seminar Press, New York (1975)

    Google Scholar 

  28. Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1), 39–100 (1991)

    Article  MATH  Google Scholar 

  29. Groenendijk, J., Stokhof, M., Veltman, F.: Coreference and modality. In: The Handbook of Contemporary Semantic Theory, pp. 179–216. Blackwell (1996)

    Google Scholar 

  30. Hawke, P., Steinert-Threlkeld, S.: Informational dynamics of epistemic possibility modals. Synthese 195(10), 4309–4342 (2018). https://doi.org/10.1007/s11229-016-1216-8

    Article  MathSciNet  MATH  Google Scholar 

  31. Incurvati, L., Schlöder, J.: Weak rejection. Australas. J. Philos. 95, 741–760 (2017)

    Article  Google Scholar 

  32. Jayez, J., Tovena, L.: Epistemic determiners. J. Semant. 23, 217–250 (2006)

    Article  Google Scholar 

  33. Johnson-Laird, P.N.: Mental Models. Cambridge University Press, Cambridge (1983)

    Google Scholar 

  34. Johnson-Laird, P., Byrne, R., Schaeken, W.: Propositional reasoning by model. Psychol. Rev. 99, 418–439 (1992)

    Article  Google Scholar 

  35. Kamp, H.: Free choice permission. Proc. Aristot. Soc. 74, 57–74 (1973)

    Article  MathSciNet  Google Scholar 

  36. Kaufmann, M.: Free choice is a form of dependence. Nat. Lang. Semant. 24(3), 247–290 (2016). https://doi.org/10.1007/s11050-016-9125-4

    Article  Google Scholar 

  37. Krahmer, E., Muskens, R.: Negation and disjunction in discourse representation theory. J. Semant. 12(4), 357–376 (1995)

    Article  Google Scholar 

  38. Kratzer, A., Shimoyama, J.: Indeterminate pronouns: the view from Japanese. In: Lee, C., Kiefer, F., Krifka, M. (eds.) Contrastiveness in Information Structure, Alternatives and Scalar Implicatures. SNLLT, vol. 91, pp. 123–143. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-10106-4_7

    Chapter  Google Scholar 

  39. Lück, M.: Team logic: axioms, expressiveness, complexity. Ph.D. thesis, University of Hannover (2020)

    Google Scholar 

  40. Mandelkern, M.: Coordination in conversation. Ph.D. thesis, Massachusetts Institute of Technology (2017)

    Google Scholar 

  41. Meyer, M.C.: Free choice items disjunction – “an apple or a pear”. In: The Wiley Blackwell Companion to Semantics. Wiley Blackwell (2020)

    Google Scholar 

  42. Nieder, A.: Representing something out of nothing: the dawning of zero. Trends Cogn. Sci. 20, 830–842 (2016)

    Article  Google Scholar 

  43. Quelhas, A., Rasga, C., Johnson-Laird, P.: The analytic truth and falsity of disjunctions. Cogn. Sci. 43, e12739 (2019)

    Google Scholar 

  44. Ross, A.: Imperatives and logic. Theoria 7, 53–71 (1941)

    Google Scholar 

  45. Rumfitt, I.: ‘Yes and No’. Mind 109, 781–823 (2000)

    Article  MathSciNet  Google Scholar 

  46. Schulz, K.: A pragmatic solution for the paradox of free choice permission. Synthese 142, 343–377 (2005). https://doi.org/10.1007/s11229-005-1353-y

    Article  MathSciNet  MATH  Google Scholar 

  47. Schwarz, B.: Consistency preservation in quantity implicature: the case of at least. Semant. Pragmatics 9(1), 1–47 (2016)

    Google Scholar 

  48. Simons, M.: Dividing things up: the semantics of or and the modal/or interaction. Nat. Lang. Semant. 13(3), 271–316 (2005). https://doi.org/10.1007/s11050-004-2900-7

    Article  MathSciNet  Google Scholar 

  49. Smiley, T.: Rejection. Analysis 56(1), 1–9 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tieu, L., Romoli, J., Zhou, P., Crain, S.: Children’s knowledge of free choice inferences and scalar implicatures. J. Semant. 33(2), 269–298 (2016). https://academic.oup.com/jos/article-abstract/33/2/269/2413864?redirectedFrom=fulltext

  51. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  52. Väänänen, J.: Modal dependence logic. In: Apt, K.R., van Rooij, R. (eds.) New Perspectives on Games and Interaction, pp. 237–254. Amsterdam University Press (2008)

    Google Scholar 

  53. Van Tiel, B., Schaeken, W.: Processing conversational implicatures: alternatives and counterfactual reasoning. Cogn. Sci. 105, 93–107 (2017)

    Google Scholar 

  54. Veltman, F.: Defaults in update semantics. J. Philos. Log. 25, 221–261 (1996). https://doi.org/10.1007/BF00248150

    Article  MathSciNet  MATH  Google Scholar 

  55. von Wright, G.: An Essay on Deontic Logic and the Theory of Action. North Holland (1968)

    Google Scholar 

  56. Yalcin, S.: Epistemic modals. Mind 116(464), 983–1026 (2007)

    Article  MathSciNet  Google Scholar 

  57. Yang, F., Väänänen, J.: Propositional team logics. Ann. Pure Appl. Logic 168, 1406–1441 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zimmermann, E.: Free choice disjunction and epistemic possibility. Nat. Lang. Semant. 8, 255–290 (2000). https://doi.org/10.1023/A:1011255819284

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank two anonymous reviewers for their insightful comments which led to substantial improvements. I am also grateful to Marco Degano for discussion and to Bo Flachs for his help with some of the proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Aloni .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 BiUS, US and PL

Theorem 1

\(\alpha _1, \dots , \alpha _n \models _{BiUS} \beta \text { iff } \alpha _1, \dots , \alpha _n \models _{US} \beta \ [\text {if } \alpha _1,... , \alpha _n, \beta \in L_{US}]\)

Proof

We only need to check the case of negation, i.e. show that \(s[\gamma ]^r=s - s[\gamma ] \) for all s and \(\gamma \in L_{PL}\) (recall that \(\Diamond \) cannot appear in the scope of negation in \(L_{US}\)). We prove this by induction on the complexity of \(\gamma \).

  1. (i)

    \(s[p]^r = s \cap \{w \in W \mid V(p,w)=0\} =s - \{w \in W \mid V(p,w)=1\} = s - W[p]=s- s[p]\)

  2. (ii)

    \(s[\alpha \wedge \beta ]^r= s[\alpha ]^r \cup s[\beta ]^r =_{IH} (s - s[\alpha ) \cup (s - s[\beta ])= s -(s[\alpha ] \cap s[\beta ]) = s - s[\alpha \wedge \beta ]\)

  3. (iii)

    \(s[\alpha \vee \beta ]^r= s[\alpha ]^r \cap s[\beta ]^r =_{IH} (s - s[\alpha ]) \cap (s - s[\beta ])= s -(s[\alpha \cup s[\beta ) = s - s[\alpha \vee \beta ]\)

  4. (iv)

    \(s[\lnot \alpha ]^r= s[\alpha ]\). Since \({s[\alpha ]\subseteq s}\) by eliminativity, \( s[\alpha ]=s -(s - s[\alpha ]) =_{IH} s - s[\alpha ]^r = s - s[\lnot \alpha ]\).

Theorem 2

\(\alpha _1, \dots , \alpha _n \models _{BiUS} \beta \text { iff } \alpha _1, \dots , \alpha _n \models _{PL} \beta \ [\text {if } \alpha _1,\dots , \alpha _n, \beta \in L_{PL}]\)

Proof

This follows from the fact that in BiUS (just like in US, see [54], page 231), all \(\alpha \in L_{PL}\) are such that for any s, \(s[\alpha ]= s \cap W[\alpha ]\).

1.2 Ignorance and Free Choice

The proofs of the facts below use the following lemmas.

Lemma 1

For \(\alpha \in L_{BiUS}\) and ne-free, and any state s.

  1. (i)

    If \(s[|\alpha |^+] \) is defined, then \(s[|\alpha |^+] = s[\alpha ]\)

  2. (ii)

    If \(s[|\alpha |^+]^r\) is defined, then \(s[|\alpha |^+]^r = s[\alpha ]^r\)

Proof

By an easy double induction on the complexity of \(\alpha \).

Lemma 2

For \(\alpha \in L_{US}\) and any state s.

  1. (i)

    Idempotence: \(s[\alpha ]=s[\alpha ][\alpha ]\) and \(s[\lnot \alpha ]=s[\lnot \alpha ][\lnot \alpha ]\)

  2. (ii)

    Monotonicity: \(s\subseteq t \) implies \(s[\alpha ] \subseteq t[\alpha ]\)

  3. (iii)

    Downward closure of \(\lnot \alpha \): \(s\subseteq t \) implies \(t[\lnot \alpha ]=t\) \(\Rightarrow \) \(s[\lnot \alpha ]=s\).

Proof

These properties are consequences of the following two facts: (a) in \(L_{US}\) all might-formulas have the form \(\Diamond \alpha \), where \(\alpha \) is \(\Diamond \)-free; (b) all \(\Diamond \)-free \(\alpha \) (i.e., \(\alpha \in L_{PL}\)) are such that for all s, \(s[\alpha ]= s \cap W[\alpha ]\).

Lemma 3

(Eliminativity). For \(\phi \in L_{BiUS}\) and any state s.

  • If \(s[\phi ]^{(r)}\) is defined, then \(s[\phi ]^{(r)}\subseteq s\)

Fact 1

(Modal Disjunction). \(|\alpha \vee \beta |^{+} \models \Diamond \alpha \wedge \Diamond \beta \)              (if \(\alpha ,\beta \in L_{US}\))

Proof

Suppose \(s[ |\alpha \vee \beta |^{+}]\) is defined. Then \(s[ |\alpha \vee \beta |^{+}]\) = \(s[|\alpha |^+] \cup s [|\beta |^{+}]\) with both \(s[|\alpha |^+]\) and \( s[|\beta |^+]\) defined and \(\ne \emptyset \). By Lemma 1 we have \(s[|\alpha |^+]=s[\alpha ]\ne \emptyset \). From \(s[|\alpha |^{+}] \subseteq s[|\alpha \vee \beta |^{+}]\) it follows \(s[\alpha ] \subseteq s[|\alpha \vee \beta |^{+}]\). By monotonicity of \(\alpha \) (Lemma 2) we conclude \(s[\alpha ] [\alpha ]\subseteq s[|\alpha \vee \beta |^{+}][\alpha ]\). Since \( s[\alpha ][\alpha ]=s[\alpha ] \ne \emptyset \) (by idempotence of \(\alpha \)), we conclude \(s[ |\alpha \vee \beta |^{+}] [\alpha ] \ne \emptyset \). But then \(s[|\alpha \vee \beta |^{+}] \models \Diamond \alpha \). Similarly for \(\Diamond \beta \).

For a counterexample to Modal Disjunction with \(\alpha \not \in L_{US}\), let \(\alpha \) be \( (p \wedge \Diamond \lnot p) \). Then \(\{w_p, w_{\emptyset }\} [|(p \wedge \Diamond \lnot p) \vee p| ^+] =\{w_p\}\) is defined but does not support \(\Diamond (p \wedge \Diamond \lnot p)\). Thus \(|(p \wedge \Diamond \lnot p) \vee p| ^+ \not \models \Diamond (p \wedge \Diamond \lnot p)\).

Fact 2

(Narrow Scope fc ). \(|\Diamond (\alpha \vee \beta )|^+ \models \Diamond \alpha \wedge \Diamond \beta \)

Proof

Suppose \(s [|\Diamond (\alpha \vee \beta )|^+ ] \) is defined. Then \(s [|\Diamond (\alpha \vee \beta )|^+ ]= s [\Diamond |(\alpha \vee \beta )|^+]= s\ne \emptyset \) and \(s [| \alpha \vee \beta |^+] = s[| \alpha |^+] \cup s[|\beta |^+] \ne \emptyset \). It follows that \(s[|\alpha |^+] \ne \emptyset \ne s[|\beta |^+]\). By Lemma 1 we conclude \(s[\alpha ] \ne \emptyset \). Hence \(s[|\Diamond (\alpha \vee \beta )|^+][\Diamond \alpha ]=s \) and thus \(s[|\Diamond (\alpha \vee \beta )|^+] \models \Diamond \alpha \). Similarly for \(\Diamond \beta \).

Fact 3

(Wide Scope fc ). \(|\Diamond \alpha \vee \Diamond \beta |^+ \models \Diamond \alpha \wedge \Diamond \beta \)

Proof

Suppose \(s [|\Diamond \alpha \vee \Diamond \beta |^+ ]\) is defined. Then \(s [|\Diamond \alpha \vee \Diamond \beta |^+]=s[|\Diamond \alpha |^+ \vee |\Diamond \beta |^+] = s[|\Diamond \alpha |^+] \cup s[|\Diamond \beta |^+]=s\ne \emptyset \). Hence both \(s[|\Diamond \alpha |^+]\) and \(s[|\Diamond \beta |^+]\) are defined which means \( s[\Diamond |\alpha |^+]= s[\Diamond |\beta |^+] =s \ne \emptyset \). It follows that \(s[|\alpha |^+] \ne \emptyset \ne s[|\beta |^+]\). By Lemma 1 we conclude \(s[\alpha ] \ne \emptyset \). Hence \(s[|\Diamond \alpha \vee \Diamond \beta |^+ ][\Diamond \alpha ]=s \) and thus \(s[|\Diamond \alpha \vee \Diamond \beta |^+ ] \models \Diamond \alpha \). Similarly for \(\Diamond \beta \).

Fact 4

(Negation 1). \(|\lnot (\alpha \vee \beta )|^+ \models \lnot \alpha \wedge \lnot \beta \)              (if \(\alpha ,\beta \in L_{US}\))

Proof

Suppose \(s[ |\lnot (\alpha \vee \beta )|^{+}]\) is defined. Then \(s[| \lnot (\alpha \vee \beta )|^{+}]\) = \(s[|\alpha |^+ \vee |\beta |^+]^r =\) \( s[|\alpha |^+]^r \cap s[|\beta |^+]^r \). By Lemma 1 we have \(s[|\alpha |^+]^r=s[\alpha ]^r =s[\lnot \alpha ]\ne \emptyset \). From \( s[|\lnot (\alpha \vee \beta )|^{+}] \subseteq s[|\alpha |^+]^r\) we have then \( s[|\lnot (\alpha \vee \beta )|^{+}] \subseteq s[\lnot \alpha ]\). By idempotence, \(s[\lnot \alpha ] =s[\lnot \alpha ] [\lnot \alpha ]\), and by downword closure, \( s[|\lnot (\alpha \vee \beta )|^{+}] = s[|\lnot (\alpha \vee \beta )|^{+}] [\lnot \alpha ]\). Hence \(s[|\lnot (\alpha \vee \beta )|^{+}] \models \lnot \alpha \). Similarly for \(\lnot \beta \).

Fact 5

(Negation 2 ). \(|\lnot \Diamond (\alpha \vee \beta )|^+ \models \lnot \Diamond \alpha \wedge \lnot \Diamond \beta \)

Proof

Suppose \(s[ |\lnot \Diamond (\alpha \vee \beta )|^{+}]\) is defined. Then \(s[| \lnot \Diamond (\alpha \vee \beta )|^{+}] = s[\Diamond |(\alpha \vee \beta )|^{+}]^r \ne \emptyset \). This means that \(s[\Diamond |(\alpha \vee \beta )|^{+}]^r =s\) and so also \(s[|(\alpha \vee \beta )|^{+}]^r = s[|\alpha |^+ \vee |\beta |^+]^r = s[|\alpha |^+]^r \cap s[|\beta |^+]^r =s\). By Lemma 1, \(s[|\alpha |^+]^r = s[\alpha ]^r\) and so \(s\subseteq s[\alpha ]^r\). By eliminativity, \(s[\alpha ]^r=s\) and so \(s[\Diamond \alpha ]^r=s\) and \(s[\lnot \Diamond \alpha ] =s\). Hence \(s[|\lnot \Diamond (\alpha \vee \beta )|^{+}] \models \lnot \Diamond \alpha \). Similarly for \(\lnot \Diamond \beta \).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aloni, M. (2023). Neglect-Zero Effects in Dynamic Semantics. In: Deng, D., Liu, M., Westerståhl, D., Xie, K. (eds) Dynamics in Logic and Language. TLLM 2022. Lecture Notes in Computer Science, vol 13524. Springer, Cham. https://doi.org/10.1007/978-3-031-25894-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25894-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25893-0

  • Online ISBN: 978-3-031-25894-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics