Skip to main content

Earth Observation Big Data Exploitation for Water Reservoirs Continuous Monitoring: The Potential of Sentinel-2 Data and HPC

  • Conference paper
  • First Online:
The Use of Artificial Intelligence for Space Applications (AII 2022)

Abstract

The impact of climate change on freshwater availability has been widely demonstrated to be severe. The capacity to timely and accurately detect, measure, monitor, and model volumetric changes in water reservoirs is therefore becoming more and more important for governments and citizens. In fact, monitoring over time the water volumes stored in reservoirs is mandatory to predict water availability for irrigation, civil and industrial uses, and hydroelectric power generation; this information is also useful to predict water depletion time with respect to various scenarios. Nowadays, water levels are usually monitored locally through traditional ground methods by a variety of administrations or companies managing the reservoirs, which are still not completely aware of the advantages of remote sensing applications. The continuous monitoring of water reservoirs, which can be performed by satellite data without the need for direct access to reservoir sites and with an overall cost that is independent of the actual extent of the reservoir, can be a valuable asset nowadays: water shortage and perduring periods of droughts interspersed with extreme weather events (as it has been experienced across all Europe in the latest years) make the correct management of water resources a critical issue in any European country (and especially in Southern Europe). The goal of this work is therefore to provide a methodology and to assess the feasibility of a service to routinely monitor and measure 3D (volumetric) changes in water reservoirs, exploiting Artificial Intelligence (AI) to improve the geometrical resolution of the available Sentinel-2 imagery (10 m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valadão, L.V., Cicerelli, R.E., de Almeida, T., Ma, J.B.C., Garnier, J.: Reservoir metrics estimated by remote sensors based on the Google Earth Engine platform. Remote Sens. Appl. Soc. Environ. 24, 100652 (2021)

    Google Scholar 

  2. UN sustainable development goals. www.un.org/sustainabledevelopment/

  3. Recovery plan for Europe-next generation EU. https://www.ec.europa.eu/info/strategy/recovery-plan-europe_en#nextgenerationeu

  4. Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., Shi, W.: Photo-realistic single image superresolution using a generative adversarial network. IEEE Computer Society, CVPR (2017)

    Google Scholar 

  5. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. IEEE Computer Society, CVPR (2017)

    Book  Google Scholar 

  6. Lempitsky, V., Vedaldi, A., Ulyanov, D.: Deep image prior. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp. 9446–9454 (2018). https://doi.org/10.1109/CVPR.2018.00984

  7. Ma, X., Hong, Y., Song, Y.: Super resolution land cover mapping of hyperspectral images using the deep image prior-based approach. Int. J. Remote Sens. 41(7), 2818–2834 (2020). https://doi.org/10.1080/01431161.2019.1698079

    Article  Google Scholar 

  8. Sun, Y., Liu, J., Yang, J., Xiao, Z., Wu, Z.: A deep image prior-based interpretable network for hyperspectral image fusion. Remote Sens. Lett. 12(12), 1250–1259 (2021). https://doi.org/10.1080/2150704X.2021.1979270

    Article  Google Scholar 

  9. Sengupta, D., Chen, R., Meadows, M.E., Banerjee, A.: Gaining or losing ground? Tracking Asia’s hunger for ‘new’ coastal land in the era of sea level rise. Sci. Total Environ. 732, 139290 (2020)

    Article  Google Scholar 

  10. Donchyts, G., Schellekens, J., Winsemius, H., Eisemann, E., Van de Giesen, N.: A 30 m resolution surface water mask including estimation of positional and thematic differences using landsat 8, srtm and openstreetmap: a case study in the Murray-Darling Basin Australia. Remote Sens. 8(5), 386 (2016)

    Article  Google Scholar 

  11. FF4EuroHPC project. HPC for reservoir monitoring. www.ff4eurohpc.eu/en/experiments/2022031511555138/hpc_for_reservoir_monitoring

Download references

Funding

This project [11] has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 951745. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Germany, Italy, Slovenia, France, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Ravanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ravanelli, R. et al. (2023). Earth Observation Big Data Exploitation for Water Reservoirs Continuous Monitoring: The Potential of Sentinel-2 Data and HPC. In: Ieracitano, C., Mammone, N., Di Clemente, M., Mahmud, M., Furfaro, R., Morabito, F.C. (eds) The Use of Artificial Intelligence for Space Applications. AII 2022. Studies in Computational Intelligence, vol 1088. Springer, Cham. https://doi.org/10.1007/978-3-031-25755-1_23

Download citation

Publish with us

Policies and ethics