Skip to main content

Preserving Buyer-Privacy in Decentralized Supply Chain Marketplaces

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2022, CBT 2022)

Abstract

Technology is being used increasingly for lowering the trust barrier in domains where collaboration and cooperation are necessary, but reliability and efficiency are critical due to high stakes. An example is an industrial marketplace where many suppliers must participate in production while ensuring reliable outcomes; hence, partnerships must be pursued with care. Online marketplaces like Xometry facilitate partnership formation by vetting suppliers and mediating the marketplace. However, such an approach requires that all trust be vested in the middleman. This centralizes control, making the system vulnerable to being biased towards specific providers. The use of blockchains is now being explored to bridge the trust gap needed to support decentralizing marketplaces, allowing suppliers and customers to interact more directly by using the information on the blockchain. A typical scenario is the need to preserve privacy in certain interactions initiated by the buyer (e.g., protecting a buyer’s intellectual property during outsourcing negotiations). In this work, we initiate the formal study of matching between suppliers and buyers when buyer-privacy is required for some marketplace interactions and make the following contributions. First, we devise a formal security definition for private interactive matching in the Universally Composable (UC) Model that captures the privacy and correctness properties expected in specific supply chain marketplace interactions. Second, we provide a lean protocol based on any programmable blockchain, anonymous group signatures, and public-key encryption. Finally, we implement the protocol by instantiating some of the blockchain logic by extending the BigChainDB blockchain platform.

Varun Madathil and Alessandra Scafuro are supported by NSF Award #1764025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Xometry https://www.xometry.com/ is one among many other (e.g., Fictiv, Protolab) online portals for on-demand manufacturing services that match their vetted suppliers with customers interested in 3D printing their unique designs.

  2. 2.

    In threshold group signatures, a signature can be de-anonymized only if a threshold of managers all agree to perform de-anonymization.

References

  1. MongoDB: the most popular database for modern apps. https://www.mongodb.com/

  2. Ateniese, G., Camenisch, J., Hohenberger, S., De Medeiros, B.: Practical group signatures without random oracles (2005)

    Google Scholar 

  3. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on hyperledger fabric with secure multiparty computation. IBM J. Res. Dev. 63(2/3), 1–8 (2019)

    Article  Google Scholar 

  4. Benjumea, V., Choi, S.G., Lopez, J., Yung, M.: Fair traceable multi-group signatures. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 231–246. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_21

    Chapter  Google Scholar 

  5. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_24

    Chapter  Google Scholar 

  6. Blömer, J., Juhnke, J., Löken, N.: Short group signatures with distributed traceability. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 166–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_14

    Chapter  Google Scholar 

  7. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  8. Canetti, R., Hogan, K., Malhotra, A., Varia, M.: A universally composable treatment of network time. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 360–375. IEEE (2017)

    Google Scholar 

  9. Chang, S.E., Chen, Y.C., Lu, M.F.: Supply chain re-engineering using blockchain technology: a case of smart contract based tracking process. Technol. Forecast. Soc. Change 144, 1–11 (2019)

    Article  Google Scholar 

  10. Galal, H.S., Youssef, A.M.: Verifiable sealed-bid auction on the ethereum blockchain. In: Zohar, A., et al. (eds.) FC 2018. LNCS, vol. 10958, pp. 265–278. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-58820-8_18

    Chapter  Google Scholar 

  11. Ghadafi, E.: Efficient distributed tag-based encryption and its application to group signatures with efficient distributed traceability. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 327–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_18

    Chapter  Google Scholar 

  12. Goldfeder, S., Bonneau, J., Gennaro, R., Narayanan, A.: Escrow protocols for cryptocurrencies: how to buy physical goods using bitcoin. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 321–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70972-7_18

    Chapter  Google Scholar 

  13. Hyperledger: hyperledger/ursa. https://github.com/hyperledger/ursa/tree/master/libzmix/src/signatures/ps

  14. Kabi, O.R., Franqueira, V.N.L.: Blockchain-based distributed marketplace. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 339, pp. 197–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-04849-5_17

    Chapter  Google Scholar 

  15. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2020)

    Book  MATH  Google Scholar 

  16. Klems, M., Eberhardt, J., Tai, S., Härtlein, S., Buchholz, S., Tidjani, A.: Trustless intermediation in blockchain-based decentralized service marketplaces. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 731–739. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3_53

    Chapter  Google Scholar 

  17. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858. IEEE (2016)

    Google Scholar 

  18. Kumar, G., et al.: Decentralized accessibility of e-commerce products through blockchain technology. Sustain. Urban Areas 62, 102361 (2020)

    Google Scholar 

  19. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall 1(11) (2014)

    Google Scholar 

  20. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation (2006)

    Google Scholar 

  21. Madathil, V., Scafuro, A., Anyanwu, K., Qiao, S., Pateria, A., Starly, B.: Preserving buyer-privacy in decentralized supply chain marketplaces. Cryptology ePrint Archive, Report 2022/105 (2022). https://ia.cr/2022/105

  22. Maram, D., et al.: Candid: can-do decentralized identity with legacy compatibility, sybil-resistance, and accountability. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1348–1366. IEEE (2021)

    Google Scholar 

  23. McConaghy, T., et al.: BigchainDB: a scalable blockchain database. White paper, BigChainDB (2016)

    Google Scholar 

  24. Montecchi, M., Plangger, K., Etter, M.: It’s real, trust me! Establishing supply chain provenance using blockchain. Bus. Horiz. 62(3), 283–293 (2019)

    Article  Google Scholar 

  25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008). https://bitcointalk.org/index.php?topic=321228.0

  26. Özyilmaz, K.R., Doğan, M., Yurdakul, A.: IDMoB: IoT data marketplace on blockchain. In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 11–19. IEEE (2018)

    Google Scholar 

  27. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_7

    Chapter  Google Scholar 

  28. Ranganthan, V.P., Dantu, R., Paul, A., Mears, P., Morozov, K.: A decentralized marketplace application on the ethereum blockchain. In: 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), pp. 90–97. IEEE (2018)

    Google Scholar 

  29. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  30. Soska, K., Christin, N.: Measuring the longitudinal evolution of the online anonymous marketplace ecosystem. In: 24th \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 15), pp. 33–48 (2015)

    Google Scholar 

  31. Soska, K., Kwon, A., Christin, N., Devadas, S.: Beaver: a decentralized anonymous marketplace with secure reputation. IACR Cryptol. ePrint Arch. 2016, 464 (2016)

    Google Scholar 

  32. Subramanian, H.: Decentralized blockchain-based electronic marketplaces. Commun. ACM 61(1), 78–84 (2017)

    Article  Google Scholar 

  33. Thio-ac, A., Domingo, E.J., Reyes, R.M., Arago, N., Jorda Jr, R., Velasco, J.: Development of a secure and private electronic procurement system based on blockchain implementation. arXiv preprint arXiv:1911.05391 (2019)

  34. Thio-ac, A., Serut, A.K., Torrejos, R.L., Rivo, K.D., Velasco, J.: Blockchain-based system evaluation: the effectiveness of blockchain on e-procurements. arXiv preprint arXiv:1911.05399 (2019)

  35. Uesugi, T., Shijo, Y., Murata, M.: Short paper: design and evaluation of privacy-preserved supply chain system based on public blockchain. arXiv preprint arXiv:2004.07606 (2020)

  36. Westerkamp, M., Victor, F., Küpper, A.: Blockchain-based supply chain traceability: token recipes model manufacturing processes. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 1595–1602. IEEE (2018)

    Google Scholar 

  37. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151(2014), 1–32 (2014)

    Google Scholar 

  38. Xiong, J., Wang, Q.: Anonymous auction protocol based on time-released encryption atop consortium blockchain. arXiv preprint arXiv:1903.03285 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Madathil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madathil, V., Scafuro, A., Anyanwu, K., Qiao, S., Pateria, A., Starly, B. (2023). Preserving Buyer-Privacy in Decentralized Supply Chain Marketplaces. In: Garcia-Alfaro, J., Navarro-Arribas, G., Dragoni, N. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2022 2022. Lecture Notes in Computer Science, vol 13619. Springer, Cham. https://doi.org/10.1007/978-3-031-25734-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25734-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25733-9

  • Online ISBN: 978-3-031-25734-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics