Skip to main content

Compliant Multi-hinge Microgripper for Biomanipulation: Microbeads Grasping Feasibility Study

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2022)

Abstract

A feasibility study on micromanipulation performed by a novel, multi-hinge microgripper with high mechanical dexterity and complex in-plane motion is herein presented. Thanks to design concepts based on selective flexibility, the device is highly compact and easy to be manufactured by means of MEMS technologies. In the presented experimental test case, the microgripper was immersed in a complex mixture, made of saline solution with floating agarose-based microbeads as target objects; direct contact tests were carried out via microscope observation of the jaw-tips operational window. The results highlight the function capability of clamping objects of tens of microns in size, encouraging further developments toward the manipulation of actual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Zhao, Y., Lin, Q.: An integrated MEMS tactile tri-axial micro-force probe sensor for Minimally Invasive Surgery. In: IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 71–76. IEEE (2009)

    Google Scholar 

  2. Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 224–227. IEEE (2019)

    Google Scholar 

  3. Buzzin, A., Asquini, R., Caputo, D., de Cesare, G.: On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)

    Article  Google Scholar 

  4. Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)

    Article  Google Scholar 

  5. Buzzin, A., Veroli, A., de Cesare, G., Belfiore, N.P.: NEMS-technology based nano gripper for mechanic manipulation in space exploration mission. Adv. Astro. Sci. 163, 61–67 (2018)

    Google Scholar 

  6. Wiklund, M., et al.: Ultrasound-induced cell–cell interaction studies in a multi-well microplate. Micromachines 5(1), 27–49 (2014)

    Article  Google Scholar 

  7. Norregaard, K., Jauffred, L., Berg-Sørensen, K., Oddershede, L.B.: Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014)

    Article  Google Scholar 

  8. Wierzbicki, R., et al.: Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectron. Eng. 83(4–9), 1651–1654 (2006)

    Article  Google Scholar 

  9. Brouwer, D., de Jong, B., Soemers, H.: Design and modeling of a six DOFs MEMS-based precision manipulator. Precis. Eng. 34(2), 307–319 (2010)

    Article  Google Scholar 

  10. Verotti, M., Dochshanov, A., Belfiore, N.P.: Compliance synthesis of CSFH MEMS-based microgrippers. J. Mech. Des. 139(2), 10 (2017)

    Article  Google Scholar 

  11. Bagolini, A., Ronchin, S., Bellutti, P., Chistè, M., Verotti, M., Belfiore, N.P.: Fabrication of novel MEMS microgrippers by deep reactive ion etching with metal hard mask. J. Microelectromech. Syst. 26(4), 926–934 (2017)

    Article  Google Scholar 

  12. Veroli, A., Buzzin, A., Frezza, F., De Cesare, G., Giovine, E., Belfiore, N.P.: An approach to the extreme miniaturization of rotary comb drives. Actuators 7(4), 70 (2018)

    Article  Google Scholar 

  13. Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design, simulation and fabrication. Micromachines 11(12), 1087 (2020)

    Article  Google Scholar 

  14. Buzzin, A., Veroli, A., de Cesare, G., Giovine, E., Verotti, M., Belfiore, N.P.: A new NEMS based linear-to-rotary displacement-capacity transducer. In: IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 201–204. IEEE (2019)

    Google Scholar 

  15. Velosa-Moncada, L.A., Aguilera-Cortés, L.A., González-Palacios, M.A., Raskin, J.P., Herrera-May, A.L.: Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications. Sensors 18(5), 1664 (2018)

    Article  Google Scholar 

  16. Verotti, M., Dochshanov, A., Belfiore, N.P.: A comprehensive survey on microgrippers design: mechanical structure. J. Mech. Des. 139(6), 060801 (2017)

    Article  Google Scholar 

  17. Buzzin, A., Rossi, A., Giovine, E., de Cesare, G., Belfiore, N.P.: Downsizing effects on micro and nano comb drives. Actuators 11(3), 71 (2022)

    Article  Google Scholar 

  18. Veroli, A., et al.: Development of a NEMS-technology based nano gripper. In: Ferraresi, C., Quaglia, G. (eds.) RAAD 2017. MMS, vol. 49, pp. 601–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276-8_63

    Chapter  Google Scholar 

  19. Luisetto, I., et al.: An interdisciplinary approach to the nanomanipulation of SiO2 nanoparticles: design, fabrication and feasibility. Appl. Sci. 8(12), 2645 (2018)

    Article  Google Scholar 

  20. Cecchi, R., et al.: Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 6(11), 1710–1728 (2015)

    Article  Google Scholar 

  21. Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)

    Article  Google Scholar 

  22. Du, N., Chou, J., Kulla, E., Floriano, P.N., Christodoulides, N., McDevitt, J.T.: A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosens. Bioelectron. 28(1), 251–256 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Buzzin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzzin, A. et al. (2023). Compliant Multi-hinge Microgripper for Biomanipulation: Microbeads Grasping Feasibility Study. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2022. Lecture Notes in Electrical Engineering, vol 999. Springer, Cham. https://doi.org/10.1007/978-3-031-25706-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25706-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25705-6

  • Online ISBN: 978-3-031-25706-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics