Skip to main content

Current Scenario on Conventional and Modern Approaches Towards Eco-friendly Electronic Waste Management

  • Chapter
  • First Online:
Microbial Technology for Sustainable E-waste Management

Abstract

In the leap of electronic vehicle era, an enormous amount of electronic trash is produced due to the growing usage of electrical and electronic devices (e-waste), which is one of the ever-increasing urgent issues, especially in developing nations. Many e-wastes are buried, burned outdoors, or discharged into surface water bodies in these nations since there is no infrastructure to handle them properly. Many developing countries currently use inefficient and highly polluting recycling techniques. Several harmful compounds of e-wastes are detrimental to the environment and endanger human health if disposal processes are not carefully handled. Design for environment cleaner production, extended producer responsibility, standards and labelling, product stewardship, recycling, and remanufacturing are some strategies many nations take to cope with the e-waste stream. This chapter discusses an overview of traditional (landfills and dumps, recycling, thermo-chemical treatment, pyrometallurgical treatment, bio-sorption, bioleaching, bioremediation methods, phytoremediation) and modern techniques (life cycle assessment (LCA), material flow analysis (MFA), and multi-criteria analysis (MCA)) in e-waste management that contribute to the eco-friendly, sustainable management of e-waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 30 March 2023

    The original version of the chapter was inadvertently published with incorrect affiliation for co-authors “Sudha Kannojiya and Shiv Prasad”. Both authors affiliation has been updated as “Division of Environment Science, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, 110012, India”.

    The correction chapter and the book have been updated with the change.

References

  • Abalansa S, El Mahrad B, Icely J, Newton A (2021) Electronic waste, an environmental problem exported to developing countries: the good, the bad and the ugly. Sustainability 13:5302

    Google Scholar 

  • Adanu SK, Gbedemah SF, Attah MK (2020) Challenges of adopting sustainable technologies in e-waste management at Agbogbloshie, Ghana. Heliyon 6:e04548

    Google Scholar 

  • Ahmed S, Panwar RM, Sharma A (2014) Forecasting e-waste amounts in India. Int J Eng Res Gen Sci 2:2091–2730

    Google Scholar 

  • Ajibo KI (2016) Transboundary hazardous wastes and environmental justice: implications for economically developing countries. Environ Law Rev 18:267–283

    Google Scholar 

  • Alabi OA, Bakare AA, Xu X et al (2012) Comparative evaluation of environmental contamination and DNA damage induced by electronic-waste in Nigeria and China. Sci Total Environ 423:62–72. https://doi.org/10.1016/j.scitotenv.2012.01.056

    Article  CAS  Google Scholar 

  • Alam M, Bahauddin K (2015) Electronic waste in Bangladesh: evaluating the situation, legislation and policy and way forward with strategy and approach. Present Environ Sustain Dev 81–102

    Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276. https://doi.org/10.1016/S0960-8524(01)00016-5

  • Ananno AA, Masud MH, Dabnichki P et al (2021) Survey and analysis of consumers’ behaviour for electronic waste management in Bangladesh. J Environ Manage 282:111943

    Google Scholar 

  • Andrade DF, Romanelli JP, Pereira-Filho ER (2019) Past and emerging topics related to electronic waste management: top countries, trends, and perspectives. Environ Sci Pollut Res 26:17135–17151

    Google Scholar 

  • Anju A, Ravi SP, Bechan S (2010) Water pollution with special reference to pesticide contamination in India. J Water Resour Prot 2010

    Google Scholar 

  • Arain AL, Pummill R, Adu-Brimpong J et al (2020) Analysis of e-waste recycling behavior based on survey at a Midwestern US University. Waste Manag 105:119–127

    CAS  Google Scholar 

  • Arain AL, Neitzel RL, Nambunmee K et al (2022) Material flow, economic and environmental life cycle performances of informal electronic waste recycling in a Thai community. Resour Conserv Recycl 180:106129

    Google Scholar 

  • Arvaniti OS, Kalantzi O-I (2021) Determinants of flame retardants in non-occupationally exposed individuals—a review. Chemosphere 263:127923

    CAS  Google Scholar 

  • Arya S, Kumar S (2020) E-waste in India at a glance: current trends, regulations, challenges and management strategies. J Clean Prod 271:122707

    Google Scholar 

  • Aslam S, Ali F, Naseer A, Sheikh Z (2022) Application of material flow analysis for the assessment of current municipal solid waste management in Karachi, Pakistan. Waste Manag Res 40:185–194

    CAS  Google Scholar 

  • Awasthi AK, Zeng X, Li J (2016) Environmental pollution of electronic waste recycling in India: a critical review. Environ Pollut 211:259–270

    CAS  Google Scholar 

  • Awasthi AK, Cucchiella F, D’Adamo I et al (2018a) Modelling the correlations of e-waste quantity with economic increase. Sci Total Environ 613:46–53

    Google Scholar 

  • Awasthi AK, Wang M, Wang Z et al (2018b) E-waste management in India: a mini-review. Waste Manag Res 36:408–414

    Google Scholar 

  • Awasthi AK, Hasan M, Mishra YK et al (2019) Environmentally sound system for E-waste: biotechnological perspectives. Curr Res Biotechnol 1:58–64. https://doi.org/10.1016/j.crbiot.2019.10.002

  • Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste: a global environmental problem. Waste Manag Res 25:307–318

    CAS  Google Scholar 

  • Baldé CP, Forti V, Gray V et al (2017) The global e-waste monitor 2017: quantities, flows and resources. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna

    Google Scholar 

  • Barbieri L, Giovanardi R, Lancellotti I, Michelazzi M (2010) A new environmentally friendly process for the recovery of gold from electronic waste. Environ Chem Lett 8:171–178

    CAS  Google Scholar 

  • Beula D, Sureshkumar M (2021) A review on the toxic E-waste killing health and environment—today’s global scenario. Mater Today Proc 47:2168–2174

    Google Scholar 

  • Bhadra U, Mishra PP (2021) Extended producer responsibility in India: evidence from Recykal, Hyderabad. J Urban Manag 10:430–439

    Google Scholar 

  • Bhaskar K, Turaga RMR (2018) India’s E-waste rules and their impact on E-waste management practices: a case study. J Ind Ecol 22:930–942

    Google Scholar 

  • Birloaga I, Coman V, Kopacek B, Vegliò F (2014) An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Waste Manag 34:2581–2586

    CAS  Google Scholar 

  • Borthakur A (2020) Policy approaches on E-waste in the emerging economies: a review of the existing governance with special reference to India and South Africa. J Clean Prod 252:119885

    Google Scholar 

  • Boyle D, Catarino AI, Clark NJ, Henry TB (2020) Polyvinyl chloride (PVC) plastic fragments release Pb additives that are bioavailable in zebrafish. Environ Pollut 263:114422

    CAS  Google Scholar 

  • Brandl H, Lehmann S, Faramarzi MA, Martinelli D (2008) Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms. Hydrometallurgy 94:14–17

    CAS  Google Scholar 

  • Brusseau ML, Anderson RH, Guo B (2020) PFAS concentrations in soils: background levels versus contaminated sites. Sci Total Environ 740. https://doi.org/10.1016/j.scitotenv.2020.140017

  • Budnik LT, Casteleyn L (2019) Mercury pollution in modern times and its socio-medical consequences. Sci Total Environ 654:720–734

    CAS  Google Scholar 

  • Cai H, Xu X, Zhang Y et al (2019) Elevated lead levels from e-waste exposure are linked to sensory integration difficulties in preschool children. Neurotoxicology 71:150–158

    CAS  Google Scholar 

  • Campos VM, Merino I, Casado R, Gómez L (2008) Phytoremediation of organic pollutants: a review. Span J Agric Res 6:38–47. https://doi.org/10.5424/sjar/200806S1-372

    Article  Google Scholar 

  • Cao Y, Chen A, Radcliffe J et al (2009) Postnatal cadmium exposure, neurodevelopment, and blood pressure in children at 2, 5, and 7 years of age. Environ Health Perspect 117:1580–1586

    CAS  Google Scholar 

  • Chakraborty P, Selvaraj S, Nakamura M et al (2018) PCBs and PCDD/Fs in soil from informal e-waste recycling sites and open dumpsites in India: levels, congener profiles and health risk assessment. Sci Total Environ 621:930–938

    CAS  Google Scholar 

  • Chatterjee S (2012) Sustainable electronic waste management and recycling process. Am J Environ Eng 2:23–33

    Google Scholar 

  • Chatterjee R (2017) Bioremediation: a tribute to green chemistry. CONSCIENTIA 35

    Google Scholar 

  • Chaurasia PK (2014) E-waste management approaches in India. Int J Eng Trends Technol 15:21–24

    Google Scholar 

  • Chen Y, Tang X, Cheema SA et al (2010) β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. J Environ Monit 12:1482–1489

    CAS  Google Scholar 

  • Chen A, Dietrich KN, Huo X, Ho S (2011) Developmental neurotoxicants in e-waste: an emerging health concern. Environ Health Perspect 119:431–438

    Google Scholar 

  • Cheng W-H (2021) Revisiting selenium toxicity. J Nutr 151:747–748

    Google Scholar 

  • Choi B-C, Shin H-S, Lee S-Y, Hur T (2006) Life cycle assessment of a personal computer and its effective recycling rate (7 pp). Int J Life Cycle Assess 11:122–128

    Google Scholar 

  • Cong X, Xu X, Xu L et al (2018) Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children. Environ Int 115:117–126. https://doi.org/10.1016/j.envint.2018.03.011

    Article  CAS  Google Scholar 

  • Copani G, Picone N, Colledani M et al (2019) Highly evolvable E-waste recycling technologies and systems. In: Factories of the future. Springer, Cham, pp 109–128

    Google Scholar 

  • Cui J, Zhang L (2008) Metallurgical recovery of metals from electronic waste: a review. J Hazard Mater 158:228–256

    CAS  Google Scholar 

  • Dai Q, Xu X, Eskenazi B et al (2020) Severe dioxin-like compound (DLC) contamination in e-waste recycling areas: an under-recognized threat to local health. Environ Int 139:105731

    CAS  Google Scholar 

  • Danzeisen R, Araya M, Harrison B et al (2007) How reliable and robust are current biomarkers for copper status? Br J Nutr 98:676–683

    CAS  Google Scholar 

  • Darnerud PO, Eriksen GS, Jóhannesson T et al (2001) Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environ Health Perspect 109:49–68

    CAS  Google Scholar 

  • Davis JM, Garb Y (2019) A strong spatial association between e-waste burn sites and childhood lymphoma in the West Bank, Palestine. Int J Cancer 144:470–475. https://doi.org/10.1002/ijc.31902

    Article  CAS  Google Scholar 

  • Decharat S, Kiddee P (2020) Health problems among workers who recycle electronic waste in southern Thailand. Osong Public Health Res Perspect 11(1):34–43

    Google Scholar 

  • De Meester S, Nachtergaele P, Debaveye S et al (2019) Using material flow analysis and life cycle assessment in decision support: a case study on WEEE valorization in Belgium. Resour Conserv Recycl 142:1–9

    Google Scholar 

  • de Oliveira Neto JF, Monteiro M, Silva MM et al (2022) Household practices regarding e-waste management: a case study from Brazil. Environ Technol Innov 102723

    Google Scholar 

  • Devika S (2010) Environmental impact of improper disposal of electronic waste. In: Recent advances in space technology services and climate change 2010 (RSTS & CC-2010). IEEE, pp 29–31

    Google Scholar 

  • De Vries A, Stoll C (2021) Bitcoin’s growing e-waste problem. Resour Conserv Recycl 175:105901

    Google Scholar 

  • Diep P, Mahadevan R, Yakunin AF (2018) Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol 6:157

    Google Scholar 

  • Directive EU (2002) 96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Off J Eur Union L 37:24–38

    Google Scholar 

  • Directive EU (2003) Directive 2003/108/EC of the European Parliament and of the Council of 8 December 2003 amending Directive 2002/96/EC on waste electrical and electronic equipment (WEEE). Off J Eur Communities L 345:12

    Google Scholar 

  • Doan LT, Amer Y, Lee S-H et al (2019) E-waste reverse supply chain: a review and future perspectives. Appl Sci 9

    Google Scholar 

  • Ebrahimi M, Khalili N, Razi S et al (2020) Effects of lead and cadmium on the immune system and cancer progression. J Environ Health Sci Eng 18:335–343

    CAS  Google Scholar 

  • Edmunds WM (2011) Beryllium: environmental geochemistry and health effects

    Google Scholar 

  • Forti V, Balde CP, Kuehr R, Bel G (2020) The global e-waste monitor 2020: quantities, flows and the circular economy potential

    Google Scholar 

  • Fowler B (2017) Current e-waste data gaps and future research directions, pp 77–81

    Google Scholar 

  • Ganguly R (2016) E-waste management in India—an overview. Int J Earth Sci Eng 9:574–588

    Google Scholar 

  • Gangwar C, Choudhari R, Chauhan A et al (2019) Assessment of air pollution caused by illegal e-waste burning to evaluate the human health risk. Environ Int 125:191–199

    CAS  Google Scholar 

  • Gao Y, Ge L, Shi S et al (2019) Global trends and future prospects of e-waste research: a bibliometric analysis. Environ Sci Pollut Res 26:17809–17820. https://doi.org/10.1007/s11356-019-05071-8

    Article  Google Scholar 

  • Garfi M, Tondelli S, Bonoli A (2009) Multi-criteria decision analysis for waste management in Saharawi refugee camps. Waste Manag 29:2729–2739

    CAS  Google Scholar 

  • Garg N, Adhana D (2019) E-waste management in India: a study of current scenario. Int J Manag Technol Eng 9

    Google Scholar 

  • Gaur A, Gurjar SK, Chaudhary S (2022) Circular system of resource recovery and reverse logistics approach: key to zero waste and zero landfill. In: Advanced organic waste management. Elsevier, pp 365–381

    Google Scholar 

  • Gautam A, Shankar R, Vrat P (2022) Managing end-of-life solar photovoltaic e-waste in India: a circular economy approach. J Bus Res 142:287–300

    Google Scholar 

  • Ghimire H, Ariya P (2020) E-wastes: bridging the knowledge gaps in global production budgets, composition, recycling and sustainability implications. Sustain Chem 1:154–182. https://doi.org/10.3390/suschem1020012

    Article  Google Scholar 

  • Gollakota ARK, Gautam S, Shu C-M (2020) Inconsistencies of e-waste management in developing nations—facts and plausible solutions. J Environ Manage 261:110234. https://doi.org/10.1016/j.jenvman.2020.110234

  • Gopikrishnan V, Vignesh A, Radhakrishnan M et al (2020) Microbial leaching of heavy metals from e-waste: opportunities and challenges. In: Biovalorisation of wastes to renewable chemicals and biofuels, pp 189–216

    Google Scholar 

  • Gunarathne V, Gunatilake SR, Wanasinghe ST et al (2020) 7—Phytoremediation for E-waste contaminated sites. In: Prasad MNV, Vithanage M, Borthakur A (eds) Handbook of electronic waste management. Butterworth-Heinemann, pp 141–170

    Google Scholar 

  • Gundaboina L, Badotra S, Bhatia TK et al (2022) Mining cryptocurrency-based security using renewable energy as source. Secur Commun Netw 2022

    Google Scholar 

  • Gupt Y, Sahay S (2019) Waste management and extended producer responsibility. Econ Polit Wkly 54:35

    Google Scholar 

  • Gupta A, Joia J, Sood A et al (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    CAS  Google Scholar 

  • Habib H, Wagner M, Baldé CP et al (2022) What gets measured gets managed—does it? Uncovering the waste electrical and electronic equipment flows in the European Union. Resour Conserv Recycl 181:106222

    Google Scholar 

  • Hasan Razi C (2011) Serum heavy metal and antioxidant element levels of children with recurrent wheezing. Allergol Immunopathol (Madr) 39:248. https://doi.org/10.1016/j.aller.2011.04.004

    Article  Google Scholar 

  • Hatami-Marbini A, Tavana M, Moradi M, Kangi F (2013) A fuzzy group Electre method for safety and health assessment in hazardous waste recycling facilities. Saf Sci 51:414–426

    Google Scholar 

  • Hazra A, Das S, Ganguly A et al (2019) Plasma arc technology: a potential solution toward waste to energy conversion and of GHGs mitigation. In: Waste valorisation and recycling. Springer Singapore, pp 203–217

    Google Scholar 

  • Herat S (2008) Contamination of solid waste from toxic materials in electronic waste (E-waste). J Solid Waste Technol Manag 34:1–18

    Google Scholar 

  • Herat S (2021) E-waste management in Asia Pacific region: review of issues, challenges and solutions. Nat Environ Pollut Technol 20:45–53

    Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    CAS  Google Scholar 

  • Hossain MS, Al-Hamadani SMZF, Rahman MT (2015) E-waste: a challenge for sustainable development. J Health Pollut 5:3–11

    Google Scholar 

  • Huang C-L, Bao L-J, Luo P et al (2016) Potential health risk for residents around a typical e-waste recycling zone via inhalation of size-fractionated particle-bound heavy metals. J Hazard Mater 317:449–456

    CAS  Google Scholar 

  • Hula A, Jalali K, Hamza K et al (2003) Multi-criteria decision-making for optimization of product disassembly under multiple situations. Environ Sci Technol 37:5303–5313

    CAS  Google Scholar 

  • Huo X, Wu Y, Xu L et al (2019) Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environ Pollut 245:453–461

    CAS  Google Scholar 

  • Ibanescu D, Cailean D, Teodosiu C, Fiore S (2018) Assessment of the waste electrical and electronic equipment management systems profile and sustainability in developed and developing European Union countries. Waste Manag 73:39–53

    Google Scholar 

  • Ilankoon I, Ghorbani Y, Chong MN et al (2018) E-waste in the international context—a review of trade flows, regulations, hazards, waste management strategies and technologies for value recovery. Waste Manag 82:258–275

    CAS  Google Scholar 

  • Ilyas S, Lee J, Kim B (2014) Bioremoval of heavy metals from recycling industry electronic waste by a consortium of moderate thermophiles: process development and optimization. J Clean Prod 70:194–202

    CAS  Google Scholar 

  • Islam MT, Huda N (2019) Material flow analysis (MFA) as a strategic tool in E-waste management: applications, trends and future directions. J Environ Manage 244:344–361. https://doi.org/10.1016/j.jenvman.2019.05.062

  • Islam MT, Dias P, Huda N (2021a) Young consumers’ e-waste awareness, consumption, disposal, and recycling behavior: a case study of university students in Sydney, Australia. J Clean Prod 282:124490

    Google Scholar 

  • Islam MT, Huda N, Baumber A et al (2021b) A global review of consumer behavior towards e-waste and implications for the circular economy. J Clean Prod 316:128297. https://doi.org/10.1016/j.jclepro.2021.128297

  • Ismail H, Hanafiah MM (2020) A review of sustainable e-waste generation and management: present and future perspectives. J Environ Manage 264:110495

    Google Scholar 

  • Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Sci Rep 5:1–10

    Google Scholar 

  • Jarema KA, Hunter DL, Shaffer RM et al (2015) Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol 52:194–209

    CAS  Google Scholar 

  • Jeyaraj P (2021) Management of E-waste in India—challenges and recommendations. World J Adv Res Rev 11:193–218

    Google Scholar 

  • Jha MK, Lee J, Kumari A et al (2011) Pressure leaching of metals from waste printed circuit boards using sulfuric acid. JOM 63:29–32

    CAS  Google Scholar 

  • Jiang C, Bo J, Xiao X et al (2020) Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber. Waste Manag 102:732–742

    CAS  Google Scholar 

  • Joo J, Kwon EE, Lee J (2021) Achievements in pyrolysis process in E-waste management sector. Environ Pollut 287:117621

    CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    CAS  Google Scholar 

  • Kahhat R, Kim J, Xu M et al (2008) Exploring e-waste management systems in the United States. Resour Conserv Recycl 52:955–964

    Google Scholar 

  • Kaifie A, Schettgen T, Bertram J et al (2020) Informal e-waste recycling and plasma levels of non-dioxin-like polychlorinated biphenyls (NDL-PCBs)—a cross-sectional study at Agbogbloshie, Ghana. Sci Total Environ 723:138073

    CAS  Google Scholar 

  • Kapp Jr RW (2016) Arsenic: toxicology and health effects

    Google Scholar 

  • Karim SM, Sharif SI, Anik M, Rahman A (2018) Negative impact and probable management policy of E-waste in Bangladesh. arXiv Preprint arXiv:1809.10021

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Google Scholar 

  • Karthika S, Lakshmanan A, Rajkishore SK et al (2019) The green synthesis and characterisation of zero valent iron nanoparticles using azolla and blue green algal systems. Int J Agric Sci Res 9:13–20

    Google Scholar 

  • Kaya M (2016) Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes. Waste Manag 57:64–90

    CAS  Google Scholar 

  • Khanpour-Alikelayeh E, Partovinia A (2021) Synergistic and antagonistic effects of microbial co-culture on bioremediation of polluted environments. In: Microbial rejuvenation of polluted environment. Springer, pp 229–265

    Google Scholar 

  • Khaobang C, Sarabhorn P, Siripaiboon C et al (2022) Pilot-scale combined pyrolysis and decoupling biomass gasification for energy and metal recovery from discarded printed circuit board and waste cable. Energy 245:123268

    CAS  Google Scholar 

  • Khuda K-E (2021) Electronic waste in Bangladesh: its present statutes, and negative impacts on environment and human health. Pollution 7:633–642

    Google Scholar 

  • Kiddee P, Naidu R, Wong MH (2013) Electronic waste management approaches: an overview. Waste Manag 33:1237–1250

    Google Scholar 

  • Kim S, Hwang T, Overcash M (2001) Life cycle assessment study of color computer monitor. Int J Life Cycle Assess 6:35–43

    Google Scholar 

  • Kumar U, Singh DN (2013) E-waste management through regulations. Int J Eng Invent 3:6–14

    Google Scholar 

  • Kumar A, Holuszko M, Espinosa DCR (2017) E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recycl 122:32–42

    Google Scholar 

  • Kuntawee C, Tantrakarnapa K, Limpanont Y et al (2020) Exposure to heavy metals in electronic waste recycling in Thailand. Int J Environ Res Public Health 17:2996

    CAS  Google Scholar 

  • Lanzerstorfer C (2015) Air classification: potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems. Waste Manag Res 33:1041–1044

    CAS  Google Scholar 

  • Laur N, Kinscherf R, Pomytkin K et al (2020) ICP-MS trace element analysis in serum and whole blood. PLoS ONE 15:e0233357

    CAS  Google Scholar 

  • Laurmaa V, Kers J, Tall K et al (2011) Mechanical recycling of electronic wastes for materials recovery. In: Recycling of electronic waste II, proceedings of the second symposium. TMS (The Minerals, Metals & Materials Society), Pittsburgh, PA

    Google Scholar 

  • Leclerc SH, Badami MG (2020) Extended producer responsibility for E-waste management: policy drivers and challenges. J Clean Prod 251:119657

    Google Scholar 

  • Leung AOW (2019) Environmental contamination and health effects due to E-waste recycling. In: Electronic waste management and treatment technology, pp 335–362

    Google Scholar 

  • Li J, Tian B, Liu T et al (2006) Status quo of e-waste management in mainland China. J Mater Cycles Waste Manag 8:13–20

    CAS  Google Scholar 

  • Li Y, Richardson JB, Mark Bricka R et al (2009) Leaching of heavy metals from E-waste in simulated landfill columns. Waste Manag 29:2147–2150. https://doi.org/10.1016/j.wasman.2009.02.005

  • Li C, Zhou K, Qin W et al (2019a) A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sediment Contam Int J 28:380–394

    Google Scholar 

  • Li T-Y, Ge J-L, Pei J et al (2019b) Emissions and occupational exposure risk of halogenated flame retardants from primitive recycling of e-waste. Environ Sci Technol 53:12495–12505

    CAS  Google Scholar 

  • Li X, Wu Y, Tan Z (2022) An overview on bioremediation technologies for soil pollution in E-waste dismantling areas. J Environ Chem Eng 107839

    Google Scholar 

  • Liu S (2020) Interactions between industrial development and environmental protection dimensions of sustainable development goals (SDGs): evidence from 40 countries with different income levels. Environ Socio-Econ Stud 8:60–67

    Google Scholar 

  • Liu Y, Huo X, Xu L et al (2018) Hearing loss in children with e-waste lead and cadmium exposure. Sci Total Environ 624:621–627

    CAS  Google Scholar 

  • Liu J, Xu H, Zhang L, Liu CT (2020) Economic and environmental feasibility of hydrometallurgical process for recycling waste mobile phones. Waste Manag 111:41–50

    CAS  Google Scholar 

  • Luo J, Cai L, Qi S et al (2017a) Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks. Chemosphere 185:386–393

    CAS  Google Scholar 

  • Luo J, Cai L, Qi S et al (2017b) A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site. J Environ Manage 204:17–22

    CAS  Google Scholar 

  • Ma H, Liao X, Liu X, Shi B (2006) Recovery of platinum (IV) and palladium (II) by bayberry tannin immobilized collagen fiber membrane from water solution. J Memb Sci 278:373–380

    CAS  Google Scholar 

  • Maheswari H, Yudoko G, Adhiutama A, Agustina H (2020) Sustainable reverse logistics scorecards for the performance measurement of informal e-waste businesses. Heliyon 6:e04834

    Google Scholar 

  • Manhart A, Osibanjo O, Aderinto A, Prakash S (2011) Informal e-waste management in Lagos, Nigeria—socio-economic impacts and feasibility of international recycling co-operations. Final Rep Compon 3:1–129

    Google Scholar 

  • Marappa N, Dharumadurai D, Thajuddin N (2017) Biological recovery of metals from electronic waste polluted environment using microorganisms, pp 149–172

    Google Scholar 

  • Mazhandu ZS, Muzenda E, Mamvura TA et al (2020) Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: challenges and opportunities. Sustainability 12:8360

    CAS  Google Scholar 

  • Meem RA, Ahmed A, Hossain MS, Khan RA (2021) A review on the environmental and health impacts due to electronic waste disposal in Bangladesh. GSC Adv Res Rev 8:116–125

    Google Scholar 

  • Mishra S (2020) Electronic waste: management, material flows, present and future scenario

    Google Scholar 

  • Mmereki D, Li B, Baldwin A, Hong L (2016) The generation, composition, collection, treatment and disposal system, and impact of E-waste. In: E-waste in transition—from pollution to resource, pp 65–93

    Google Scholar 

  • MoEF (Ministry of Environment and Forests) (2010) Draft for E-waste (management and handling) rules, 2010

    Google Scholar 

  • Mohod CV, Dhote J (2013) Review of heavy metals in drinking water and their effect on human health. Int J Innov Res Sci Eng Technol 2:2992–2996

    Google Scholar 

  • Montano L, Pironti C, Pinto G et al (2022) Polychlorinated biphenyls (PCBs) in the environment: occupational and exposure events, effects on human health and fertility. Toxics 10:365

    CAS  Google Scholar 

  • Mudila H, Prasher P, Kumar M et al (2019) An insight into cadmium poisoning and its removal from aqueous sources by graphene adsorbents. Int J Environ Health Res 29:1–21

    CAS  Google Scholar 

  • Mudila H, Prasher P, Kumar A et al (2021) E-waste and its hazard management by specific microbial bioremediation processes. In: Panpatte DG, Jhala YK (eds) Microbial rejuvenation of polluted environment: volume 2. Springer Singapore, Singapore, pp 139–166

    Google Scholar 

  • Muñoz I, Gazulla C, Bala A et al (2009) LCA and ecodesign in the toy industry: case study of a teddy bear incorporating electric and electronic components. Int J Life Cycle Assess 14:64–72

    Google Scholar 

  • Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste—an emerging threat to the environment of urban India. J Environ Health Sci Eng 12:36. https://doi.org/10.1186/2052-336X-12-36

    Article  CAS  Google Scholar 

  • Nowakowski P (2020) Reconfigurable recycling systems of E-waste. In: E-waste recycling and management. Springer, pp 19–38

    Google Scholar 

  • Nti AAA, Arko-Mensah J, Botwe PK et al (2020) Effect of particulate matter exposure on respiratory health of e-waste workers at Agbogbloshie, Accra, Ghana. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17093042

  • OECD (2001) Extended producer responsibility: a guidance manual for governments. OECD, Paris

    Google Scholar 

  • Osibanjo O, Nnorom IC (2007) The challenge of electronic waste (e-waste) management in developing countries. Waste Manag Res 25:489–501

    CAS  Google Scholar 

  • Oskarsson A, Reeves AL (2015) Handbook on the toxicology of metals

    Google Scholar 

  • Owusu-Sekyere SO (2018) Cardio-respiratory function among formal sector workers at Agbogbloshie E-waste recycling site in Accra, Ghana

    Google Scholar 

  • Pahari AK, Dubey BK (2018) Waste from electrical and electronics equipment. In: Plastics to energy: fuel, chemicals, and sustainability implications. Elsevier, pp 443–468

    Google Scholar 

  • Panchal R, Singh A, Diwan H (2021) Economic potential of recycling e-waste in India and its impact on import of materials. Resour Policy 74:102264

    Google Scholar 

  • Panda S, Biswal A, Mishra S et al (2015) Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: a new concept of biohydrometallurgy. Hydrometallurgy 153:98–105

    CAS  Google Scholar 

  • Pant VK, Kumar S (2018) Global and Indian perspective of E-waste and its environmental impact. In: 2018 international conference on system modeling & advancement in research trends (SMART). IEEE, pp 132–137

    Google Scholar 

  • Pant D, Joshi D, Upreti MK, Kotnala RK (2012) Chemical and biological extraction of metals present in E waste: a hybrid technology. Waste Manag 32:979–990. https://doi.org/10.1016/j.wasman.2011.12.002

  • Pant D, Giri A, Dhiman V (2018) Bioremediation techniques for E-waste management. In: Waste bioremediation. Springer, pp 105–125

    Google Scholar 

  • Parajuly K, Kuehr R, Awasthi AK et al (2019) Future E-waste scenarios. StEP Initiative, UNU ViE-SCYCLE, UNEP IETC

    Google Scholar 

  • Park P-J, Tahara K, Jeong I-T, Lee K-M (2006) Comparison of four methods for integrating environmental and economic aspects in the end-of-life stage of a washing machine. Resour Conserv Recycl 48:71–85

    Google Scholar 

  • Patel S, Kasture A (2014) E (electronic) waste management using biological systems—overview. Int J Curr Microbiol Appl Sci 3:495–504

    Google Scholar 

  • Pathak P, Srivastava RR (2017) Assessment of legislation and practices for the sustainable management of waste electrical and electronic equipment in India. Renew Sustain Energy Rev 78:220–232

    Google Scholar 

  • Patil RA, Ramakrishna S (2020) A comprehensive analysis of e-waste legislation worldwide. Environ Sci Pollut Res 27:14412–14431

    Google Scholar 

  • Paul H, Helmut R (2004) Practical handbook of material flow analysis. Lewis Publishers, Washington, DC

    Google Scholar 

  • Peana M, Medici S, Dadar M et al (2021) Environmental barium: potential exposure and health-hazards. Arch Toxicol 95:2605–2612

    CAS  Google Scholar 

  • Peng Y, Wu J, Luo X et al (2019) Spatial distribution and hazard of halogenated flame retardants and polychlorinated biphenyls to common kingfisher (Alcedo atthis) from a region of South China affected by electronic waste recycling. Environ Int 130:104952

    CAS  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Bioremediation: applied microbial solutions for real-world environmental cleanup, pp 139–236

    Google Scholar 

  • Pokhrel P, Lin S-L, Tsai C-T (2020) Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. J Environ Manage 276:111276

    CAS  Google Scholar 

  • Pollock D, Coulon R (1996) Life cycle assessment: of an inkjet print cartridge. In: Proceedings of the 1996 IEEE international symposium on electronics and the environment. ISEE-1996. IEEE, pp 154–160

    Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    CAS  Google Scholar 

  • Prek M (2004) Environmental impact and life cycle assessment of heating and air conditioning systems, a simplified case study. Energy Build 36:1021–1027

    Google Scholar 

  • Queiruga D, Walther G, Gonzalez-Benito J, Spengler T (2008) Evaluation of sites for the location of WEEE recycling plants in Spain. Waste Manag 28:181–190

    Google Scholar 

  • Ramachandra TV, Saira-Varghese K (2004) Environmentally sound options for e-wastes management. Envies J Hum Settl

    Google Scholar 

  • Ranasinghe WW, Athapattu BCL (2020) 13—Challenges in E-waste management in Sri Lanka. In: Prasad MNV, Vithanage M, Borthakur A (eds) Handbook of electronic waste management. Butterworth-Heinemann, pp 283–322

    Google Scholar 

  • Rautela R, Arya S, Vishwakarma S et al (2021) E-waste management and its effects on the environment and human health. Sci Total Environ 773:145623

    CAS  Google Scholar 

  • Rode S (2012) E-waste management in Mumbai metropolitan region: constraints and opportunities. Theor Empir Res Urban Manag 7:89–103

    Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review. Part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 248

    Google Scholar 

  • Rotter VS, Maehlitz P, Korf N et al (2016) ProSUM deliverable 4.1—waste flow studies, pp 1–100

    Google Scholar 

  • Rousis K, Moustakas K, Malamis S et al (2008) Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus. Waste Manag 28:1941–1954

    CAS  Google Scholar 

  • Roychowdhury P, Alghazo JM, Debnath B et al (2019) Security threat analysis and prevention techniques in electronic waste. In: Waste management and resource efficiency. Springer, pp 853–866

    Google Scholar 

  • Sahajwalla V, Hossain R (2020) The science of microrecycling: a review of selective synthesis of materials from electronic waste. Mater Today Sustain 9:100040

    Google Scholar 

  • Sahle-Demessie E, Glaser J, Richardson T (2018) Electronics waste management challenges and opportunities. In: American chemical society 2018 national meeting

    Google Scholar 

  • Sakhuja D, Ghai H, Bhatia RK, Bhatt AK (2022) Management of e-Waste: technological challenges and opportunities. In: Handbook of solid waste management, pp 1523–1557

    Google Scholar 

  • Salhofer S (2017) E-waste collection and treatment options: a comparison of approaches in Europe, China and Vietnam. In: Source separation and recycling, p 227

    Google Scholar 

  • Scharnhorst W, Althaus H-J, Classen M et al (2005) The end of life treatment of second generation mobile phone networks: strategies to reduce the environmental impact. Environ Impact Assess Rev 25:540–566

    Google Scholar 

  • Schumacher KA (2016) Electronic waste management in the US practice and policy. University of Delaware

    Google Scholar 

  • Secretariat RS (2011) E-waste in India. India research unit (Larrdis). Rajya Sabha Secretariat, New Delhi

    Google Scholar 

  • Seith R, Arain AL, Nambunmee K et al (2019) Self-reported health and metal body burden in an electronic waste recycling community in northeastern Thailand. J Occup Environ Med 61:905–909. https://doi.org/10.1097/JOM.0000000000001697

    Article  CAS  Google Scholar 

  • Sepúlveda A, Schluep M, Renaud FG et al (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41

    Google Scholar 

  • Shahabuddin M, Uddin MN, Chowdhury JI et al (2022) A review of the recent development, challenges, and opportunities of electronic waste (e-waste). Int J Environ Sci Technol 1–8

    Google Scholar 

  • Shaikh S, Thomas K, Zuhair S, Magalini F (2020) A cost-benefit analysis of the downstream impacts of e-waste recycling in Pakistan. Waste Manag 118:302–312

    Google Scholar 

  • Sharma M, Joshi S, Kumar A (2020a) Assessing enablers of e-waste management in circular economy using DEMATEL method: an Indian perspective. Environ Sci Pollut Res 27:13325–13338

    Google Scholar 

  • Sharma S, Wakode S, Sharma A et al (2020b) Effect of environmental toxicants on neuronal functions. Environ Sci Pollut Res 27:44906–44921

    CAS  Google Scholar 

  • Sharma J, Goutam J, Dhuriya YK, Sharma D (2021) Bioremediation of industrial pollutants. In: Microbial rejuvenation of polluted environment. Springer, pp 1–31

    Google Scholar 

  • Sharma P, Bano A, Singh SP et al (2022) Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. Chemosphere 135538

    Google Scholar 

  • Sheel A, Pant D (2018) Recovery of gold from electronic waste using chemical assisted microbial biosorption (hybrid) technique. Bioresour Technol 247:1189–1192

    CAS  Google Scholar 

  • Shen Y, Yuan R, Chen X et al (2018) Co-pyrolysis of E-waste nonmetallic residues with biowastes. ACS Sustain Chem Eng 6:9086–9093

    CAS  Google Scholar 

  • Shi J, Xiang L, Luan H et al (2019) The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site. Ecotoxicol Environ Saf 186:109817

    CAS  Google Scholar 

  • Shittu OS, Williams ID, Shaw PJ (2021) Global E-waste management: can WEEE make a difference? A review of e-waste trends, legislation, contemporary issues and future challenges. Waste Manag 120:549–563. https://doi.org/10.1016/j.wasman.2020.10.016

  • Shuey SA, Taylor P (2005) Review of pyrometallurgical treatment of electronic scrap. Min Eng 57:67–70

    Google Scholar 

  • Sinduja M, Sathya V, Maheswari M et al (2022a) Chemical transformation and bioavailability of chromium in the contaminated soil amended with bioamendments. Bioremediat J 1–22. https://doi.org/10.1080/10889868.2022.2049677

  • Sinduja M, Sathya V, Maheswari M et al (2022b) Evaluation and speciation of heavy metals in the soil of the Sub Urban Region of Southern India. Soil Sediment Contam Int J 1–20. https://doi.org/10.1080/15320383.2022.2030298

  • Singh C, Lin J (2010) Bioaugmentation efficiency of diesel degradation by Bacillus pumilus JLB and Acinetobacter calcoaceticus LT1 in contaminated soils. Afr J Biotechnol 9:6881–6888

    Google Scholar 

  • Singh M, Thind PS, John S (2018) Health risk assessment of the workers exposed to the heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. Chemosphere 203:426–433

    CAS  Google Scholar 

  • Sivaramanan S (2013) E-waste management, disposal and its impacts on the environment. Univers J Environ Res Technol 3

    Google Scholar 

  • Skinner A, Dinter Y, Lloyd A, Strothmann P (2010) The challenges of E-waste management in India: can India draw lessons from the EU and the USA. Asien 117:26

    Google Scholar 

  • Srivastava RR, Pathak P (2020) Policy issues for efficient management of E-waste in developing countries. In: Handbook of electronic waste management. Elsevier, pp 81–99

    Google Scholar 

  • Streicher-Porte M, Bader H-P, Scheidegger R, Kytzia S (2007) Material flow and economic analysis as a suitable tool for system analysis under the constraints of poor data availability and quality in emerging economies. Clean Technol Environ Policy 9:325–345

    CAS  Google Scholar 

  • Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7:4267–4277

    CAS  Google Scholar 

  • Tiller KG (1989) Heavy metals in soils and their environmental significance. In: Advances in soil science. Springer, pp 113–142

    Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Google Scholar 

  • Tutton CG, Young SB, Habib K (2022) Pre-processing of e-waste in Canada: case of a facility responding to changing material composition. Resour Environ Sustain 9:100069

    Google Scholar 

  • Vats MC, Singh SK (2014) E-waste characteristic and its disposal. Int J Ecol Sci Environ Eng 1:49–61

    Google Scholar 

  • Verma AK (2020) E-wastes and their impact on environment and public health. Int J Appl Res

    Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  • Wang D, Cai Z, Jiang G et al (2005) Determination of polybrominated diphenyl ethers in soil and sediment from an electronic waste recycling facility. Chemosphere 60:810–816

    CAS  Google Scholar 

  • Wang F, Huisman J, Meskers CEM et al (2012) The best-of-2-worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies. Waste Manag 32:2134–2146

    Google Scholar 

  • Wang F, Kuehr R, Ahlquist D, Li J (2013) E-waste in China: a country report

    Google Scholar 

  • Wang C, Chen H, Li H et al (2020) Review of emerging contaminant tris (1, 3-dichloro-2-propyl) phosphate: environmental occurrence, exposure, and risks to organisms and human health. Environ Int 143:105946

    CAS  Google Scholar 

  • Wath SB, Vaidya AN, Dutt PS, Chakrabarti T (2010) A roadmap for development of sustainable E-waste management system in India. Sci Total Environ 409:19–32

    CAS  Google Scholar 

  • Widmer R, Oswald-Krapf H, Sinha-Khetriwal D et al (2005) Global perspectives on e-waste. Environ Impact Assess Rev 25:436–458

    Google Scholar 

  • Williams E (2005) International activities on E-waste and guidelines for future work. In: Proceedings of the third workshop on material cycles and waste management in Asia. National Institute of Environmental Sciences, Tsukuba, Japan

    Google Scholar 

  • Xavier LH, Ottoni M, Lepawsky J (2021) Circular economy and e-waste management in the Americas: Brazilian and Canadian frameworks. J Clean Prod 297:126570

    Google Scholar 

  • Xia M-C, Wang Y-P, Peng T-J et al (2017) Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J Biosci Bioeng 123:714–721

    CAS  Google Scholar 

  • Xu X, Chen X, Zhang J et al (2015a) Decreased blood hepatitis B surface antibody levels linked to e-waste lead exposure in preschool children. J Hazard Mater 298:122–128. https://doi.org/10.1016/j.jhazmat.2015.05.020

    Article  CAS  Google Scholar 

  • Xu X, Yekeen TA, Liu J et al (2015b) Chromium exposure among children from an electronic waste recycling town of China. Environ Sci Pollut Res 22:1778–1785

    CAS  Google Scholar 

  • Xu L, Huo X, Liu Y et al (2020) Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. Chemosphere 246:125829

    CAS  Google Scholar 

  • Yong YS, Lim YA, Ilankoon IMSK (2019) An analysis of electronic waste management strategies and recycling operations in Malaysia: challenges and future prospects. J Clean Prod 224:151–166. https://doi.org/10.1016/j.jclepro.2019.03.205

  • Youcai Z (2018) Leachate generation and characteristics. In: Pollution control technology for leachate from municipal solid waste, pp 1–30

    Google Scholar 

  • Zanghelini GM, Cherubini E, Soares SR (2018) How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J Clean Prod 172:609–622

    Google Scholar 

  • Zeng G, Luo S, Deng X et al (2013) Influence of silver ions on bioleaching of cobalt from spent lithium batteries. Miner Eng 49:40–44

    CAS  Google Scholar 

  • Zeng J, Gou M, Tang YQ et al (2016a) Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community. Bioresour Technol 218:859–866. https://doi.org/10.1016/j.biortech.2016.07.051

    Article  CAS  Google Scholar 

  • Zeng X, Xu X, Boezen HM, Huo X (2016b) Children with health impairments by heavy metals in an e-waste recycling area. Chemosphere 148:408–415

    CAS  Google Scholar 

  • Zeng X, Xu X, Zheng X et al (2016c) Heavy metals in PM2.5 and in blood, and children’s respiratory symptoms and asthma from an e-waste recycling area. Environ Pollut 210:346–353

    CAS  Google Scholar 

  • Zeng X, Duan H, Wang F, Li J (2017) Examining environmental management of e-waste: China’s experience and lessons. Renew Sustain Energy Rev 72:1076–1082

    Google Scholar 

  • Zeng Z, Huo X, Zhang Y et al (2019) Differential DNA methylation in newborns with maternal exposure to heavy metals from an e-waste recycling area. Environ Res 171:536–545

    CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    CAS  Google Scholar 

  • Zhang M (2017) Air pollution and human health risk assessment in e-waste recycling sites and urban indoor environment in South China

    Google Scholar 

  • Zhang S, Forssberg E (1997) Mechanical separation-oriented characterization of electronic scrap. Resour Conserv Recycl 21:247–269

    Google Scholar 

  • Zhang S, Forssberg E (1999) Intelligent liberation and classification of electronic scrap. Powder Technol 105:295–301

    CAS  Google Scholar 

  • Zhang Y, Xu X, Chen A et al (2018) Maternal urinary cadmium levels during pregnancy associated with risk of sex-dependent birth outcomes from an e-waste pollution site in China. Reprod Toxicol 75:49–55. https://doi.org/10.1016/j.reprotox.2017.11.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Dinesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthika, P. et al. (2023). Current Scenario on Conventional and Modern Approaches Towards Eco-friendly Electronic Waste Management. In: Debbarma, P., Kumar, S., Suyal, D.C., Soni, R. (eds) Microbial Technology for Sustainable E-waste Management. Springer, Cham. https://doi.org/10.1007/978-3-031-25678-3_1

Download citation

Publish with us

Policies and ethics