Skip to main content

Optimized Implementation of Quantum Binary Field Multiplication with Toffoli Depth One

  • Conference paper
  • First Online:
Information Security Applications (WISA 2022)

Abstract

Shor’s algorithm models discrete logarithms on binary elliptic curves and provides polynomial-time solutions. One of major overheads in applying Shor’s algorithm is implementing binary elliptic curve arithmetic in quantum circuits. Among operations of elliptic curves over binary fields, the multiplication is essential and cost-critical even in the quantum field.

In this paper, we aim to optimize quantum binary field multiplication. Previous works on quantum multiplication focused on minimizing the number of Toffoli gates or qubits. In contrast, our work presents strategies for optimizing Toffoli depth and full depth, which are key factors in the Noisy Intermediate-Scale Quantum (NISQ) era. To achieve our goal, Karatsuba multiplication using divide-and-conquer approach is adopted. In a nutshell, we present an optimized quantum multiplication with Toffoli depth one. Furthermore, under the influence of the optimized Toffoli depth, the full depth is naturally reduced.

In order to show the effectiveness of proposed method, the performance is evaluated by various metrics, such as, qubits, quantum gates, depth, and qubits-depth product. To the best of our knowledge, this is the first study on quantum multiplication that optimizes Toffoli depth and full depth.

This work was partly supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2018-0-00264, Research on Blockchain Security Technology for IoT Services, 50%) and this work was partly supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (<Q|Crypton>, No. 2019-0-00033, Study on Quantum Security Evaluation of Cryptography based on Computational Quantum Complexity, 50%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://research.ibm.com/blog/ibm-quantum-roadmap.

  2. 2.

    https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Desnitsky, V., Levshun, D., Chechulin, A., Kotenko, I.V.: Design technique for secure embedded devices: application for creation of integrated cyber-physical security system. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 7(2), 60–80 (2016)

    Google Scholar 

  3. Yan, Z., Geng, G., Nakazato, H., Park, Y.-J.: Secure and scalable deployment of resource public key infrastructure (RPKI). J. Internet Serv. Inf. Secur. 8(1), 31–45 (2018)

    Google Scholar 

  4. Häner, T., Roetteler, M., Svore, K.M.: Factoring using \(2n+2\) qubits with Toffoli based modular multiplication. arXiv preprint. arXiv:1611.07995 (2016)

  5. Gidney, C.: Factoring with \(n+2\) clean qubits and \(n-1\) dirty qubits. arXiv preprint. arXiv:1706.07884 (2017)

  6. Roetteler, M., Naehrig, M., Svore, K.M., Lauter, K.: Quantum resource estimates for computing elliptic curve discrete logarithms. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 241–270. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_9

    Chapter  Google Scholar 

  7. Häner, T., Jaques, S., Naehrig, M., Roetteler, M., Soeken, M.: Improved quantum circuits for elliptic curve discrete logarithms. In: Ding, J., Tillich, J.-P. (eds.) PQCrypto 2020. LNCS, vol. 12100, pp. 425–444. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44223-1_23

    Chapter  MATH  Google Scholar 

  8. Van Hoof, I.: Space-efficient quantum multiplication of polynomials for binary finite fields with sub-quadratic Toffoli gate count. arXiv preprint. arXiv:1910.02849 (2019)

  9. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization of a quantum polynomial-time attack on elliptic curve cryptography. In: Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 96–104. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2_9

    Chapter  MATH  Google Scholar 

  10. Kepley, S., Steinwandt, R.: Quantum circuits for \(\mathbb{F} _{2^n}\)-multiplication with subquadratic gate count. Quantum Inf. Process. 14(7), 2373–2386 (2015). https://doi.org/10.1007/s11128-015-0993-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Jang, K., Choi, S.J., Kwon, H., Hu, Z., Seo, H.: Impact of optimized operations \(A\cdot B\), \(A\cdot C\) for binary field inversion on quantum computers. In: You, I. (ed.) WISA 2020. LNCS, vol. 12583, pp. 154–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65299-9_12

    Chapter  Google Scholar 

  12. Jang, K., et al.: Binary field montgomery multiplication on quantum computers. Cryptology ePrint Archive (2021)

    Google Scholar 

  13. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of AES with fewer qubits. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 697–726. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_24

    Chapter  Google Scholar 

  14. Bhattacharjee, D., Chattopadhyay, A.: Depth-optimal quantum circuit placement for arbitrary topologies. arXiv preprint. arXiv:1703.08540 (2017)

  15. NIST. Submission requirements and evaluation criteria for the post-quantum cryptography standardization process (2016). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

  16. Steiger, D.S., Häner, T., Troyer, M.: ProjectQ: an open source software framework for quantum computing. Quantum 2, 49 (2018)

    Article  Google Scholar 

  17. Cross, A.: The IBM Q experience and Qiskit open-source quantum computing software. In: APS March Meeting Abstracts, vol. 2018, pp. L58–003 (2018)

    Google Scholar 

  18. Svore, K., et al.: Q# enabling scalable quantum computing and development with a high-level dsl. In: Proceedings of the Real World Domain Specific Languages Workshop, vol. 2018, pp. 1–10 (2018)

    Google Scholar 

  19. Karatsuba, A.: Multiplication of multidigit numbers on automata. Sov. Phys. Doklady 7, 595–596 (1963)

    Google Scholar 

  20. Amy, M., Maslov, D., Mosca, M., Roetteler, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32, 818–830 (2013)

    Article  Google Scholar 

  21. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_10

    Chapter  Google Scholar 

  22. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(\(2^m\)) using normal basis. Inf. Comput. 78, 171–177 (1988)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwajeong Seo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H. (2023). Optimized Implementation of Quantum Binary Field Multiplication with Toffoli Depth One. In: You, I., Youn, TY. (eds) Information Security Applications. WISA 2022. Lecture Notes in Computer Science, vol 13720. Springer, Cham. https://doi.org/10.1007/978-3-031-25659-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25659-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25658-5

  • Online ISBN: 978-3-031-25659-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics