Skip to main content

Decentralized and Efficient Blockchain Rewriting with Bi-level Validity Verification

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2022)

Abstract

Numerous studies have established that the immutability, a crucial property of blockchains, need to be delicately broken under certain circumstance as the content in blockchains could be compelled to redact for personal or legal reasons. Existing schemes ordinarily leverage policy-based chameleon hash (PCH) to perform fine-grained rewriting on blockchains, where modifiers with attributes satisfying the access policy can be authorized to modify the content in the blockchain. However, these schemes rely on a single trusted authority for managing rewriting permissions, which could be affected by a potential single point of failure. Meanwhile, heavy computations in such schemes might affect the performance in practical use.

To address these limitations, we propose a decentralized and efficient blockchain rewriting scheme with bi-level validity verification. With the integration of the multi-authorities attribute-based encryption, our scheme supports the modifier to obtain rewriting secret keys from various authorities for performing rewriting at transaction level. Moreover, computationally intensive operations in our scheme can be performed in stages and partially outsourced to the proxy server. As an assurance of security, our scheme provides bi-level validity verification for the rewriting secret key and the content on blockchain. Moreover, we present formal security analysis and conduct comparison experiments to illustrate the advantages in both functionality and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Algorithms separated by slashes represent functionally identical stages in various schemes, albeit with different names.

References

  1. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems. J. Cryptographic Eng. 3(2), 111–128 (2013)

    Article  Google Scholar 

  2. Ateniese, G., Magri, B., Venturi, D., Andrade, E.: Redactable blockchain-or-rewriting history in bitcoin and friends. In: 2017 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 111–126. IEEE (2017)

    Google Scholar 

  3. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy (S &P 2007), 20–23 May 2007, Oakland, California, USA, pp. 321–334. IEEE Computer Society (2007)

    Google Scholar 

  4. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryptology 17(4), 297–319 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.: Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_6

    Chapter  Google Scholar 

  6. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_33

    Chapter  Google Scholar 

  7. Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_28

    Chapter  Google Scholar 

  8. De Aguiar, E.J., Faiçal, B.S., Krishnamachari, B., Ueyama, J.: A survey of blockchain-based strategies for healthcare. ACM Comput. Surv. (CSUR) 53(2), 1–27 (2020)

    Article  Google Scholar 

  9. Derler, D., Samelin, K., Slamanig, D., Striecks, C.: Fine-grained and controlled rewriting in blockchains: chameleon-hashing gone attribute-based. In: 26th Annual Network and Distributed System Security Symposium, NDSS 2019, San Diego, California, USA, 24–27 February 2019. The Internet Society (2019)

    Google Scholar 

  10. Deuber, D., Magri, B., Thyagarajan, S.A.K.: Redactable blockchain in the permissionless setting. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 124–138. IEEE (2019)

    Google Scholar 

  11. Dutta, P., Choi, T.M., Somani, S., Butala, R.: Blockchain technology in supply chain operations: applications, challenges and research opportunities. Transp. Res. Part E: Logist. Transp. Rev. 142, 102067 (2020)

    Article  Google Scholar 

  12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006, pp. 89–98. ACM (2006)

    Google Scholar 

  13. Guo, F., Mu, Y., Chen, Z.: Identity-based online/Offline encryption. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 247–261. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_22

    Chapter  Google Scholar 

  14. Guo, L., Wang, Q., Yau, W.-C.: Online/offline rewritable blockchain with auditable outsourced computation. IEEE Trans. Cloud Comput., 1 (2021). https://doi.org/10.1109/TCC.2021.3102031

  15. Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_17

    Chapter  Google Scholar 

  16. Krawczyk, H., Rabin, T.: Chameleon signatures. In: Proceedings of the Network and Distributed System Security Symposium, NDSS 2000, San Diego, California, USA (2000)

    Google Scholar 

  17. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  18. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_31

    Chapter  Google Scholar 

  19. Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12

    Chapter  Google Scholar 

  20. Lewko, A.B., Waters, B.: Decentralizing attribute-based encryption. In: Proceedings of Advances in Cryptology - EUROCRYPT 2011–30th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia, 15–19 May 2011, vol. 6632, pp. 568–588 (2011)

    Google Scholar 

  21. Li, J., Zhang, Y., Ning, J., Huang, X., Poh, G.S., Wang, D.: Attribute based encryption with privacy protection and accountability for cloudiot. IEEE Trans. Cloud Comput. 10, 762–773 (2020)

    Article  Google Scholar 

  22. Maram, S.K.D., et al.: Churp: dynamic-committee proactive secret sharing. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pp. 2369–2386 (2019)

    Google Scholar 

  23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  24. Puddu, I., Dmitrienko, A., Capkun, S.: \(\mu \)chain: How to forget without hard forks. Cryptology ePrint Archive (2017)

    Google Scholar 

  25. Qi, S., Lu, Y., Zheng, Y., Li, Y., Chen, X.: Cpds: enabling compressed and private data sharing for industrial internet of things over blockchain. IEEE Trans. Ind. Inf. 17(4), 2376–2387 (2020)

    Article  Google Scholar 

  26. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  27. Thyagarajan, S.A.K., Bhat, A., Magri, B., Tschudi, D., Kate, A.: Reparo: publicly verifiable layer to repair blockchains. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 37–56. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0_2

    Chapter  Google Scholar 

  28. Tian, Y., Li, N., Li, Y., Szalachowski, P., Zhou, J.: Policy-based chameleon hash for blockchain rewriting with black-box accountability. In: Annual Computer Security Applications Conference, pp. 813–828 (2020)

    Google Scholar 

  29. Tian, Y., Liu, B., Li, Y., Szalachowski, P., Zhou, J.: Accountable fine-grained blockchain rewriting in the permissionless setting. arXiv preprint arXiv:2104.13543 (2021)

  30. Voigt, P., von dem Bussche, A.: The EU General Data Protection Regulation (GDPR), vol. 1. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57959-7

    Book  Google Scholar 

  31. Xie, M., Ruan, Y., Hong, H., Shao, J.: A CP-ABE scheme based on multi-authority in hybrid clouds for mobile devices. Future Gener. Comput. Syst. 121, 114–122 (2021)

    Article  Google Scholar 

  32. Yu, Y., Guo, L., Liu, S., Zheng, J., Wang, H.: Privacy protection scheme based on CP-ABE in crowdsourcing-IoT for smart ocean. IEEE Internet Things J. 7(10), 10061–10071 (2020)

    Article  Google Scholar 

  33. Zhang, Z., Li, T., Wang, Z., Liu, J.: Redactable transactions in consortium blockchain: controlled by multi-authority CP-ABE. In: Baek, J., Ruj, S. (eds.) ACISP 2021. LNCS, vol. 13083, pp. 408–429. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90567-5_21

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for the valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (No. 62072359, No. 62072352, No. 61902292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, K., Yang, L., Zhou, L., Ma, J. (2023). Decentralized and Efficient Blockchain Rewriting with Bi-level Validity Verification. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds) Security and Privacy in Communication Networks. SecureComm 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-25538-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25538-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25537-3

  • Online ISBN: 978-3-031-25538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics