Skip to main content

Rare and Threatened Plant Conservation Translocations: Lessons Learned and Future Directions

  • Chapter
  • First Online:
Ecological Restoration

Abstract

The conservation and recovery of rare and threatened plant species is often challenging due to the small number of propagules, plants, and populations available. Because translocation can be a complex and expensive undertaking that requires long-term commitment, practitioners around the world are still investigating the practical approaches and strategies to increase the efficacy of this conservation tool. Worldwide reviews indicate that very few translocation attempts have resulted in evidentially documented recruiting populations; however, this finding is likely to have arisen from a combination of interacting factors, including the need for species to have sufficient time and supportive environments to mature and reproduce successfully. Over the past 30 plus years, several lessons have come to light during our work in this field: select a suitable recipient site; use a large number of genetically diverse founders; promote germination and survival; provide aftercare; monitor over a long enough period to document survival and population establishment; use appropriate benchmarks to measure success; monitor plants for disease and take action to prevent disease; know that establishing a rare plant population via conservation translocation is a long-term process; conduct your translocation as an experiment and publish your results so that we can grow the science and learn from one another; and engage policymakers, practitioners, and the public in your work. We provide case studies to illustrate these lessons.

Banksia brownie Case Study: David Coates (3); Key Tree Cactus Case Study: Jennifer Possley (7); Mountain Arnica Case Study: Joyce Maschinski (1); Spiral fruited wattle Case Study: Leonie Monks (3); Seed Orchards Case Study: Rebecca Dillon (5); Long’s braya Case Study: Luise Hermanutz (9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeli, T., & Dixon, K. (2016). Translocation ecology: The role of ecological sciences in plant translocation. Plant Ecology, 217, 123–125.

    Article  Google Scholar 

  • Albrecht, M. A., & Edwards, C. E. (2020). Genetic monitoring to assess the success of restoring rare plant populations with mixed gene pools. Molecular Ecology, 29, 4037–4039.

    Article  PubMed  Google Scholar 

  • Albrecht, M. A., Guerrant, E. O., Jr., Kennedy, K., & Maschinski, J. (2011). A long-term view of rare plant reintroduction. Biological Conservation, 144, 2557–2558.

    Article  Google Scholar 

  • Albrecht, M. A., Osazuwa-Peters, O. L., Maschinski, J., Bell, T. J., Bowles, M. L., Brumback, W. E., Duquesnel, J., Kunz, M., Lange, J., McCue, K. A., McEachern, A. K., Murray, S., Olwell, P., Pavlovic, N. B., Peterson, C. L., Possley, J., Randall, J. L., & Wright, S. J. (2019). Effects of life history and reproduction on recruitment time lags in reintroductions of rare plants. Conservation Biology, 33, 601–611.

    Article  PubMed  Google Scholar 

  • Allen, C. R., Fontaine, J. J., Pope, K. L., & Garmestani, A. S. (2011). Adaptive management for a turbulent future. Journal of Environmental Management, 92, 1339–1345.

    Article  PubMed  Google Scholar 

  • Ames, G. M., Wall, W. A., Hohmann, M. G., & Wright, J. P. (2020). Functional trait similarity predicts survival in rare plant reintroductions. Ecological Applications, 30(4), e02087. https://doi.org/10.1002/eap.2087

    Article  PubMed  Google Scholar 

  • Barrett, S., & Rathbone, D. (2018). Long-term phosphite application maintains species assemblages, richness and structure of plant communities invaded by Phytophthora cinnamomic. Austral Ecology, 43, 360–374.

    Article  Google Scholar 

  • Barrett, S., & Yates, C. J. (2015). Risks to a mountain summit ecosystem with endemic biota in southwestern Australia. Austral Ecology, 40, 423–432.

    Article  Google Scholar 

  • Basey, A. C., Fant, J. B., & Kramer, A. T. (2015). Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants Journal, 16, 37–52.

    Article  Google Scholar 

  • Baskin, C., & Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd Edition. Academic Press.

    Google Scholar 

  • Becknell, R. E., Showalter, K. G., Albrecht, M. A., & Mangan, S. A. (2021). Soil mutualisms potentially determine the reintroduction outcome of an endangered legume. Restoration Ecology, 29, e13355.

    Article  Google Scholar 

  • Bellis, J. M., Longden, M., Styles, J., & Dalrymple, S. (2021). Using macroecological species distribution models to estimate change in the suitability of sites for threatened species reintroduction. Ecological Solutiona and Evidence, 2021(2), e1205.

    Google Scholar 

  • Berger-Tal, O., Blumstein, D. T., & Swaisgood, R. R. (2020). Conservation translocations: A review of common difficulties and promising directions. Animal Conservation, 23, 121–131.

    Article  Google Scholar 

  • Broadhurst, L., & Coates, D. (2017). Plant conservation in Australia: Current directions and future challenges. Plant Diversity, 39, 348–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzosko, E., Jermakowicz, E., Ostrowiecka, B., Tałałaj, I., Wróblewska, A., & Mirski, P. (2018). Rare plant translocation between mineral islands in Biebrza Valley (northeastern Poland): Effectiveness and recipient site selection. Restoration Ecology, 26, 56–62.

    Article  Google Scholar 

  • Bureau of Meteorology and CSIRO. (2020). The State of the Climate 2020. Commonwealth of Australia.

    Google Scholar 

  • CAML. (2021). Generic conservation strategies: Conservation standards adoption – A change management strategy, v 1.26. Conservation Actions Measures Library (CAML). https://conservationstandards.org/library-item/cschangemanagement/

    Google Scholar 

  • Casazza, G., Abeli, T., Bacchetta, G., Dagnino, D., Fenu, G., Gargano, D., Minuto, L., Montagnani, C., Orsenigo, S., Peruzzi, L., & L, Varaldo, and G. Rossi. (2021). Combining conservation status and species distribution models for planning assisted colonisation under climate change. Journal of Ecology, 109, 2284–2295.

    Article  Google Scholar 

  • Center for Plant Conservation (CPC). (2019). CPC Best Plant Conservation Practices to Support Species Survival in the Wild. Center for Plant Conservation.

    Google Scholar 

  • Coates, D. J., McArthur, S. L., & Byrne, M. (2015). Significant genetic diversity loss following pathogen driven population extinction in the rare endemic Banksia brownii (Proteaceae). Biological Conservation, 192, 353–360.

    Article  Google Scholar 

  • Colas, B., Kirchner, F., Riba, M., Olivieri, I., Mignot, A., Imbert, E., Beltrame, C., Carbonell, D., & Freville, H. (2008). Restoration demography: A 10-year demographic comparison between introduced and natural populations of endemic Centaurea corymbosa (Asteraceae). Journal of Applied Ecology, 45, 1468–1476.

    Article  Google Scholar 

  • Commander, L. E., Coates, D., Broadhurst, L., Offord, C. A., Makinson, R. O., & Matthes, M. (2018). Guidelines for the Translocation of Threated Plants in Australia (3rd ed.). Australian Network for Plant Conservation.

    Google Scholar 

  • Copp, C. (2014). The development of protocols to restore the globally at-risk limestone barrens ecosystem. MSc thesis, Memorial University.

    Google Scholar 

  • Corredor-Moreno, P., & Saunders, D. G. O. (2020). Expecting the unexpected: Factors influencing the emergence of fungal and oomycete plant pathogens. The New Phytologist, 225, 118–125.

    Article  PubMed  Google Scholar 

  • Cross, A. T., Pedrini, S., & Dixon, K. W. (2020). Foreword: International standards for native seeds in ecological restoration. Restoration Ecology, 28(S3), S216–S218.

    Article  Google Scholar 

  • Dalrymple, S. E., Banks, E., Stewart, G. B., & Pullin, A. S. (2012). A meta-analysis of threatened plant reintroductions from across the globe. In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils (pp. 31–50). Island Press.

    Chapter  Google Scholar 

  • Dalrymple, S. E., Winder, R., & Campbell, E. M. (2021). Exploring the potential for plant translocations to adapt to a warming world. Journal of Ecology, 109, 2264–2270.

    Article  Google Scholar 

  • Diallo, M., Ollier, S., Mayeur, A., Fernández-Manjarrés, J., García-Fernández, A., Iriondo, J. M., Vaissière, A.-C., & Colas, B. (2021). Plant translocations in Europe and the Mediterranean: Geographical and climatic directions and distances from source to host sites. Journal of Ecology, 109, 2296–2308.

    Article  Google Scholar 

  • Dillon, R., Monks, L., & Coates, D. (2018). Establishment success and persistence of threatened plant translocations in south west Western Australia: An experimental approach. Australian Journal of Botany, 66, 338–346.

    Article  Google Scholar 

  • Duquesnel, J. A., Maschinski, J., McElderry, R., Gann, G. D., Bradley, K., & Cowan, E. (2017). Sequential augmentation reveals life history and suitable conditions for colonization of the rare mahogany mistletoe in South Florida. Restoration Ecology. https://doi.org/10.1111/rec.12485

  • Falk, D. A., Millar, C., & Olwell, P. (1996). Restoring diversity: Strategies for reintroduction of endangered plants. Island Press.

    Google Scholar 

  • Fant, J. B., Kramer, A., Sirkin, E., & Havens, K. (2013). Genetics of reintroduced populations of the narrowly endemic thistle, Cirsium pitcheri (Asteraceae). Botany, 91, 301–308.

    Article  Google Scholar 

  • Fenu, G., Bacchetta, G., Charalambos, S. C., Fournaraki, C., del Galdo, G. P. G., Gotsiou, P., Kyratzis, A., Piazza, C., Vicens, M., Pinna, M. S., & de Montmollin, B. (2019). An early evaluation of translocation actions for endangered plant species on Mediterranean islands. Plant Diversity, 41, 94–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenu, G., Bacchetta, G., Christodoulou, C. S., Cogoni, D., Fournaraki, C., del Galdo, G. P. G., Gotsiou, P., Kyratzis, A., Piazza, C., Vicens, M., & de Montmollin, B. (2020). A common approach to the conservation of threatened Island vascular plants: First results in the Mediterranean Basin. Diversity, 12, 157. https://doi.org/10.3390/d12040157

    Article  Google Scholar 

  • Fortini, L. B., Kaiserb, L. R., Keithc, L. M., Priced, J., Hughese, R. F., Jacobif, J. D., & Friday, J. B. (2019). The evolving threat of Rapid ‘Ōhi‘a Death (ROD) to Hawai‘i’s native ecosystems and rare plant species. Forest Ecology and Management, 448, 376–385.

    Article  Google Scholar 

  • Franck, A., Barrios, D., St, K. E., Campbell, E., Lange, J., Rigerszki, Z., Haakonsson, J., Gann, G., Cinea, W., Howe, N. M., St. John, J., Moreno, S., & Clark, C. C. (2019). Revision of Pilosocereus (Cactaceae) in the Caribbean and Northern Andes. Phytotaxa, 411(3), 129–182.

    Article  Google Scholar 

  • Frankham, R. (2015). Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of geneflow. Molecular Ecology, 24, 2610–2618.

    Article  PubMed  Google Scholar 

  • Frankham, R. (2016). Genetic rescue benefits persist to at least the F3 generation, based on a meta-analysis. Biological Conservation, 195, 33–36.

    Article  Google Scholar 

  • Frankham, R., Ballou, J.D., Eldridge, M.D.B, Lacy, R.C., Ralls, K., Dudash, M.R., & Fenster, C.B. (2011) Predicting the probability of outbreeding depression. Conservation Biology 25: 465–475

    Google Scholar 

  • Godefroid, S., Piazza, C., Rossi, G., Buord, S., Stevens, A., Aguraiuja, R., et al. (2011). How successful are plant species reintroductions? Biological Conservation, 144, 672–682.

    Article  Google Scholar 

  • Godefroid, S., Le Pajolec, S., & Van Rossum, F. (2016). Pre-translocation considerations in rare plant reintroductions: Implications for designing protocols. Plant Ecology, 217, 169–182.

    Article  Google Scholar 

  • Goodman, J., Maschinski, J., Hughes, P., McAuliffe, J., Roncal, J., Powell, D., & Sternberg, L. O. (2012). Differential response to soil salinity in endangered Key tree cactus: Implications for survival in a changing climate. PLoS One. http://dx.plos.org/10.1371/journal.pone.0032528

  • Guerrant, E. O., Jr. (2012). Characterizing two decades of rare plant reintroductions. In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils. Island Press.

    Google Scholar 

  • Harris, S., Arnall, S., Byrne, M., Coates, D., Hayward, M., Martin, T., Mitchell, N., & Garnett, S. (2013). Whose backyard? Some precautions in choosing recipient sites for assisted colonisation of Australian plants and animals. Ecological Management & Restoration, 14, 106–111.

    Article  Google Scholar 

  • Havens, K., Vitt, P., Still, S., Kramer, A. T., Fant, J. B., & Schatz, K. (2015). Seed sourcing for restoration in an era of climate change. Natural Areas Journal, 35, 122–133.

    Article  Google Scholar 

  • Heywood, V. H. (2017). Plant conservation in the Anthropocene – Challenges and future prospects. Plant Diversity, 39, 314–330.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoban, S., Kallow, S., & Trivedi, C. (2018). Implementing a new approach to effective conservation of genetic diversity, with ash (Fraxinus excelsior) in the UK as a case study. Biological Conservation, 225, 10–21.

    Article  Google Scholar 

  • Holling, C. S. (1978). Adaptive environmental assessment and management. Wiley.

    Google Scholar 

  • Hugron, S., Guene-Nanchen, M., Roux, N., LeBlanc, M.-C., & Rochefort, L. (2020). Plant reintroduction in restored peatlands: 80% successfully transferred – Does the remaining 20% matter? Global Ecology and Conservation, 22, e 01000.

    Article  Google Scholar 

  • IUCN/SSC. (2013). Guidelines for reintroductions and other conservation translocations. Version 1.0. Gland, Switzerland: IUCN Species Survival Commission.

    Google Scholar 

  • Kaulfuß, F., & Reisch, C. (2017). Reintroduction of the endangered and endemic plant species Cochlearia bavarica—Implications from conservation genetics. Ecology and Evolution, 7, 11100–11112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight, T. M. (2012). Using population viability analysis to plan reintroductions. In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils (pp. 155–169). Island Press.

    Chapter  Google Scholar 

  • Laikre, L., Hoban, S., Bruford, M. W., et al. (2020). Post-2020 goals overlook genetic diversity. Science, 367(1083), 2.

    Google Scholar 

  • Lima, A. N., & Adams, R. M. (1996). The distribution and abundance of Pilosocereus robinii (Lemaire) Byles and Rowley in the Florida Keys. Bradleya, 14, 57–62.

    Article  Google Scholar 

  • Liu, H., Ren, H., Liu, Q., Wen, X., Maunder, M., & Gao, J. (2015). Translocation of threatened plants as a conservation measure in China. Conservation Biology, 29, 1537–1551.

    Article  PubMed  Google Scholar 

  • Luijten, S. H., Dierick, A., Oostermeijer, J. G. B., Raijmann, L. L., & den Nijs, H. C. (2000). Population size, genetic variation, and reproductive success in a rapidly declining, self-incompatible perennial (Arnica Montana) in the Netherlands. Conservation Biology, 14, 1776–1787.

    PubMed  Google Scholar 

  • Martin, H., Touzet, P., Dufay, M., Godé, C., Schmitt, E., Lahiani, E., et al. (2017). Lineages of Silene nutans developed rapid, strong, asymmetric postzygotic reproductive isolation in allopatry. Evolution, 71, 1519–1531.

    Article  CAS  PubMed  Google Scholar 

  • Maschinski, J., & Albrecht, M. A. (2017). Center for plant conservation’s best practice guidelines for the reintroduction of rare plants. Plant Diversity, 39, 390–395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maschinski, J., & Albrecht, M. A. (2023). Conservation translocations for plants. In M. Gaywood, J.G. Ewen, P. Hollingsworth & A. Moehrenschlager (Eds.), Conservation translocation. Cambridge University Press.

    Google Scholar 

  • Maschinski, J., Falk, D. A., Wright, S. J., Possley, J., Roncal, J., & Wendelberger, K. S. (2012a). Optimal locations for plant reintroductions in a changing world. In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils. Island Press.

    Chapter  Google Scholar 

  • Maschinski, J., Albrecht, M. A., Monks, L., & Haskins, K. E. (2012b). Center for plant conservation best reintroduction practice guidelines. In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils. Island Press.

    Chapter  Google Scholar 

  • Maschinski, J., Wright, S. J., Koptur, S., & Pinto-Torres, E. (2013). When is local the best paradigm? Breeding history influences conservation reintroduction survival and trajectories in times of extreme climate events. Biological Conservation, 159, 277–284.

    Article  Google Scholar 

  • Maschinski, J., Possley, J., Walters, C., Hill, L., Krueger, L., & Hazelton, D. (2018). Improving success of rare plant seed reintroductions: A case study of Dalea carthagenesis var. floridana, a rare legume with dormant seeds. Restoration Ecology, 26, 636–641.

    Article  Google Scholar 

  • Mason, A. (2014). Temporal Patterns of Plant Recolonization on Limestone Quarries. B.Sc. Honours thesis, Memorial University, Department of Biology, St.

    Google Scholar 

  • Moir, M. L., Coates, D. J., Kensington, W. J., Barrett, S., & Taylor, G. S. (2016). Concordance in evolutionary history of threatened plant and insect populations warrant unified conservation management approaches. Biological Conservation, 198, 135–144.

    Article  Google Scholar 

  • Monks, L., Coates, D., & Dillon, R. (2018). Threatened plant translocation case study: Acacia cochlocarpa subsp. cochlocarpa (Spiral fruited wattle). Fabaceae. Australiasian Plant Conservation, 26(4), 3–5.

    Google Scholar 

  • Monks, L., Barrett, S., Beecham, B., Byrne, M., Chant, A., Coates, D., Cochrane, J. A., Crawford, A., Dillon, R., & Yates, C. (2019). Recovery of threatened plant species and their habitats in the biodiversity hotspot of the Southwest Australian Floristic Region. Plant Diversity, 41, 59–74.

    Article  PubMed  Google Scholar 

  • Monks, L., Standish, R., McArthur, S., Dillon, R., Byrne, M., & Coates, D. (2021). Genetic and mating system assessment of translocation success of the long-lived perennial shrub Lambertia orbifolia (Proteaceae). Restoration Ecology, 29(5), e13369.

    Article  Google Scholar 

  • Munt, D. D., Marques, I., & Iriondo, J. M. (2016). Acquiring baseline information for successful plant translocations when there is no time to lose: The case of the neglected critically endangered Narcissus cavanillesii (Amaryllidaceae). Plant Ecology, 217, 193–206.

    Article  Google Scholar 

  • Neale, J. R. (2012). Genetic considerations in rare plant reintroduction: Practical applications or (how are we doing?). In J. Maschinski & K. E. Haskins (Eds.), Plant Reintroduction in a Changing Climate: Promises and Perils. Island Press.

    Google Scholar 

  • Newhouse, A. E., & Powell, W. A. (2021). Intentional introgression of a blight tolerance transgene to rescue the remnant population of American chestnut. Conservation Science and Practice, 3, e348. https://doi.org/10.1111/csp2.348

    Article  Google Scholar 

  • Noe, G. B., Fellows, M. Q. N., Parsons, L., West, J., Callaway, J., Trnka, S., Wegener, M., & Zedler, J. (2019). Adaptive management assists reintroduction as higher tides threaten an endangered salt marsh plant. Restoration Ecology, 27, 750–757.

    Article  Google Scholar 

  • Pavlik, B. (1996). Defining and measuring success. In D. A. Falk, C. I. Millar, & M. Olwell (Eds.), Restoring Diversity. Island Press.

    Google Scholar 

  • Pelley, D. (2011). Reintroduction Methods on the Limestone Barrens of Newfoundland for Three Endemic Plant Species: The Endangered Braya Longii, Threatened Braya Fernaldii (Brassicaceae), and the Endangered Salix jejuna (Salicaceae). Masters of Environmental Science, Memorial University, St.

    Google Scholar 

  • Pence, V. C., Ballesteros, D., Walters, C., Reed, B. M., Philpott, M., Dixon, K. W., Pritchard, H. W., Culley, T. M., & Vanhove, A. C. (2020). Cryobiotechnologies: Tools for expanding long-term ex situ conservation to all plant species. Biological Conservation, 250, 10876.

    Article  Google Scholar 

  • Possley, J., Cuni, L., Wintergerst, S., Lange, J., & Harding, B. (2021). Conservation of South Florida endangered and threatened Flora: 2020–2021 program at fairchild tropical botanic garden. Final report for Contract #027132, Florida Department of Agriculture and Consumer Services, Division of Plant Industry.

    Google Scholar 

  • Prober, S. M., Broadhurst, L., Boggs, G., Breed, M. F., Bush, D., Lynch, A. J. J., & Dickson, F. (2018). Discussion paper: Achieving more with less – Linking ecological restoration investments with ecological restoration research infrastructure. CSIRO.

    Google Scholar 

  • Rathbone, D. A., & Barrett, S. (2017). Vertebrate browsing impacts in a threatened montane plant community and implications for management. Ecological Management and Restoration, 18, 164–171.

    Article  Google Scholar 

  • Reiter, N., Vlcek, K., O’brien, N., Gibson, M., Pitts, D., Brown, G. R., Bower, C. C., & Phillips, R. D. (2017). Pollinator rarity limits reintroduction sites in an endangered sexually deceptive orchid (Caladenia hastata): Implications for plants with specialized pollination systems. Botanical Journal of the Linnean Society, 184, 122–136.

    Article  Google Scholar 

  • Robichaux, R. H., Friar, E. A., & Mount, D. W. (1997). Molecular genetic consequences of a population bottleneck associated with reintroduction of the Mauna Kea Silversword (Argyroxiphium sandwicense ssp. sandwicense [Asteraceae]). Conservation Biology, 11, 1140–1146.

    Article  Google Scholar 

  • Silcock, J. L., Simmons, C. L., Monks, L., Dillon, R., Reiter, N., Jusaitis, M., Vesk, P. A., Byrne, M., & Coates, D. J. (2019). Threatened plant translocation in Australia: A review. Biological Conservation, 236, 211–222.

    Article  Google Scholar 

  • Southeast Florida Regional Climate Change Compact Sea Level Rise Work Group. (2020). Southeast Florida Regional Climate Change Compact Climate Leadership Committee. 36p. https://southeastfloridaclimatecompact.org/wp-content/uploads/2020/04/Sea-Level-Rise-Projection-Guidance-Report_FINAL_02212020.pdf

  • Squires, S. (2010). Insect pests and pathogens compromise the persistence of two endemic and rare Braya (Brassicaceae). Doctoral (PhD) thesis, Memorial University, St.

    Google Scholar 

  • Squires, S., Hermanutz, L., & Dixon, P. (2009). Agricultural insect pest compromises survival of two endemic Braya (Brassicaceae). Biological Conservation, 142, 203–211.

    Article  Google Scholar 

  • Steele, S. E., Ryder, O. A., & Maschinski, J. (2021). RNA-Seq reveals adaptive genetic potential of the rare Torrey pine (Pinus torreyana) in the face of Ips bark beetle outbreaks. Conservation Genetics. https://doi.org/10.1007/s10592-021-01394-7

  • Thorne, K., MacDonald, G., Guntenspergen, R. A., Buffington, K., Dugger, B., Freeman, C., Janousek, C., Brown, L., & Rosencranz, J. (2018). US Pacific coastal wetland resilience and vulnerability to sea-level rise. Science. Advances, 4, eaao3270.

    Google Scholar 

  • Turner, S. R., Steadman, K. J., Vlahos, S., Koch, J. M., & Dixon, K. W. (2013). Storage for restoration-ready seeds: The feasibility of prestorage dormancy alleviation for mine-site revegetation. Restoration Ecology, 21, 186–192.

    Article  Google Scholar 

  • Van Rossum, F., Hardy, O. J., Le Pajolec, S., & Raspé, O. (2020). Genetic monitoring of translocated plant populations in practice. Molecular Ecology, 29, 4040–4058.

    Article  PubMed  Google Scholar 

  • Walsh, S., & Wolkis, D. (2021). Perpetuating Ohia, https://ntbg.org/news/perpetuating-ohia/. Accessed 13 Oct 2021

  • Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D. B., Sunnucks, P., Breed, M. F., James, E. A., & Hoffmann, A. A. (2011). Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evolutionary Applications, 4, 709–725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wendelberger, K. S. (2016). Evaluating plant community response to sea level rise and anthropogenic drying: Can life stage and competitive ability be used as indicators in guiding conservation actions? FIU Electronic Theses and Dissertations 2558. https://digitalcommons.fiu.edu/etd/2558

  • Wendelberger, K. S., & Maschinski, J. (2016). Assessing microsite and regeneration niche preferences through experimental reintroduction of the rare plant Tephrosia angustisima var. corallicola. Journal of Ecology, 217, 155–167.

    Google Scholar 

  • Yates, C. J., & Broadhurst, L. M. (2002). Assessing limitations on population growth in two critically endangered acacia taxa. Biological Conservation, 108, 13–26.

    Article  Google Scholar 

  • Zimmer, H. C., Auld, T. D., Cuneo, P., Offord, C. A., & Commander, L. E. (2019). Conservation translocation – An increasingly viable option for managing threatened plant species. Australian Journal of Botany, 67, 501–509.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Maschinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maschinski, J. et al. (2023). Rare and Threatened Plant Conservation Translocations: Lessons Learned and Future Directions. In: Florentine, S., Gibson-Roy, P., Dixon, K.W., Broadhurst, L. (eds) Ecological Restoration. Springer, Cham. https://doi.org/10.1007/978-3-031-25412-3_8

Download citation

Publish with us

Policies and ethics