Skip to main content

Anesthesia and Ancillary Drugs and the Neonate

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

Drug dosing in neonates should be based on physiological characteristics of the neonate, pharmacokinetic/pharmacodynamic considerations, and the adverse effects profile. Disease processes and treatments in this group are distinct from adults. Age, size, comorbidities, coadministration of drugs, and genetic polymorphisms explain the extensive variabilities between individual pharmacokinetic (PK) and pharmacodynamic (PD) profiles in this population. Postmenstrual age (PMA) may range from extreme preterm birth at 22 weeks up to 50 weeks PMA, whereas weight may range from 0.5 to 5 kg. Characterization of maturation pharmacokinetics has improved our ability to predict appropriate doses, but the neonatal response to drugs remains, in many respects, poorly understood. Although neuromuscular monitoring is robust in neonates, there remains a need to develop other clinically applicable tools to assess anaesthesia depth, sedation, or analgesic response and to provide effect feedback. Physiological immaturities such as cardiac calcium disposition in the neonatal heart or plasma-binding proteins create unanticipated adverse effect profiles: for example, calcium channel blockers may cause bradycardia and unbound amide anaesthetic concentrations cause toxicity. The usability of many adult medications in neonates is limited without detailed investigations to identify unknown adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berde C. Convulsions associated with pediatric regional anesthesia. Anesth Analg. 1992;75:164–6.

    Article  CAS  PubMed  Google Scholar 

  2. Eleveld DJ, Proost JH, Vereecke H, et al. An allometric model of remifentanil pharmacokinetics and pharmacodynamics. Anesthesiology. 2017;126:1005–18.

    Article  CAS  PubMed  Google Scholar 

  3. Arnold JH, Truog RD, Scavone JM, Fenton T. Changes in the pharmacodynamic response to fentanyl in neonates during continuous infusion. J Pediatr. 1991;119:639–43.

    Article  CAS  PubMed  Google Scholar 

  4. Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev. 1984;15:153–71.

    Article  CAS  PubMed  Google Scholar 

  5. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to D-tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    Article  CAS  PubMed  Google Scholar 

  6. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47:231–43.

    Article  CAS  PubMed  Google Scholar 

  7. Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102:2941–52.

    Article  CAS  PubMed  Google Scholar 

  8. Holford NH, Anderson BJ. Why standards are useful for predicting doses. Br J Clin Pharmacol. 2017;83:685–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Allegaert K, van den Anker JN, de Hoon JN, et al. Covariates of tramadol disposition in the first few months of life. Br J Anaesth. 2008;100:525–32.

    Google Scholar 

  10. West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol. 2005;208:1575–92.

    Article  PubMed  Google Scholar 

  11. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–6.

    Article  CAS  PubMed  Google Scholar 

  12. Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson TN. The problems in scaling adult drug doses to children. Arch Dis Child. 2008;93:207–11.

    Article  CAS  PubMed  Google Scholar 

  14. Edginton AN, Schmitt W, Voith B, Willmann S. A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet. 2006;45:683–704.

    Article  CAS  PubMed  Google Scholar 

  15. Peeters MY, Allegaert K, Blusse van Oud-Alblas HJ, et al. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet. 2010;49:269–75.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson BJ, Holford NH. Tips and traps analyzing pediatric PK data. Paediatr Anaesth. 2011;21:222–37.

    Article  PubMed  Google Scholar 

  17. Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Br J Clin Pharmacol. 2017;83:247–54.

    Article  PubMed  Google Scholar 

  18. Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;14:iv–vii.

    Google Scholar 

  19. Richards FJ. A flexible growth function for empirical use. J Exp Bot. 1959;10:290–301.

    Article  Google Scholar 

  20. Pelkonen O. Drug metabolism in the human fetal liver. Relationship to fetal age. Arch Int Pharmacodyn Ther. 1973;202:281–7.

    CAS  PubMed  Google Scholar 

  21. Pelkonen O, Kaltiala EH, Larmi TK, Karki NT. Comparison of activities of drug-metabolizing enzymes in human fetal and adult livers. Clin Pharmacol Ther. 1973;14:840–6.

    Article  CAS  PubMed  Google Scholar 

  22. Pelkonen O, Karki NT. Drug metabolism in human fetal tissues. Life Sci. 1973;13:1163–80.

    Article  CAS  Google Scholar 

  23. Ward RM, Drover DR, Hammer GB, et al. The pharmacokinetics of methadone and its metabolites in neonates, infants, and children. Pediatr Anesth. 2014;24:591–601.

    Article  Google Scholar 

  24. Welzing L, Ebenfeld S, Dlugay V, Wiesen MH, Roth B, Mueller C. Remifentanil degradation in umbilical cord blood of preterm infants. Anesthesiology. 2011;114:570–7.

    Article  PubMed  Google Scholar 

  25. Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharmaceutics. 2013;452:3–7.

    Article  CAS  Google Scholar 

  26. Allegaert K, Peeters MY, Verbesselt R, et al. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Brit J Anaesth. 2007;99:864–70.

    Article  CAS  PubMed  Google Scholar 

  27. Conney AH, Davison C, Gastel R, Burns JJ. Adaptive increases in drug-metabolizing enzymes induced by phenobarbital and other drugs. J Pharmacol Exp Ther. 1960;130:1–8.

    CAS  PubMed  Google Scholar 

  28. Perucca E. Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol. 2006;61:246–55.

    Article  CAS  PubMed  Google Scholar 

  29. Strolin Benedetti M, Ruty B, Baltes E. Induction of endogenous pathways by antiepileptics and clinical implications. Fundam Clin Pharmacol. 2005;19:511–29.

    Article  CAS  PubMed  Google Scholar 

  30. Corcos L, Lagadic-Gossmann D. Gene induction by Phenobarbital: an update on an old question that receives key novel answers. Pharmacol Toxicol. 2001;89:113–22.

    Article  CAS  PubMed  Google Scholar 

  31. Eker HE, Yalcin Cok O, Aribogan A, Arslan G. Children on phenobarbital monotherapy requires more sedatives during MRI. Pediatric Anesthesia. 2011;10:998–1002.

    Article  Google Scholar 

  32. Anderson BJ, van Lingen RA, Hansen TG, Lin YC, Holford NH. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology. 2002;96:1336–45.

    Article  CAS  PubMed  Google Scholar 

  33. Grand RJ, Watkins JB, Torti FM. Development of the human intestinal tract: a review. Gastroenterology. 1976;70:790–810.

    Article  CAS  PubMed  Google Scholar 

  34. Liang J, Co E, Zhang M, Pineda J, Chen JD. Development of gastric slow waves in preterm infants measured by electrogastrography. Am J Physiol. 1998;274:G503–8.

    CAS  PubMed  Google Scholar 

  35. van Hoogdalem E, de Boer AG, Breimer DD. Pharmacokinetics of rectal drug administration, Part I. General considerations and clinical applications of centrally acting drugs. Clin Pharmacokinet. 1991;21:11–26.

    Article  PubMed  Google Scholar 

  36. Taddio A, Stevens B, Craig K, et al. Efficacy and safety of lidocaine-prilocaine cream for pain during circumcision. N Engl J Med. 1997;336:1197–201.

    Article  CAS  PubMed  Google Scholar 

  37. Grassin-Delyle S, Buenestado A, Naline E, et al. Intranasal drug delivery: an efficient and non-invasive route for systemic administration: focus on opioids. Pharmacol Ther. 2012;134:366–79.

    Article  CAS  PubMed  Google Scholar 

  38. Salanitre E, Rackow H. The pulmonary exchange of nitrous oxide and halothane in infants and children. Anesthesiology. 1969;30:388–94.

    Article  CAS  PubMed  Google Scholar 

  39. Lerman J. Pharmacology of inhalational anaesthetics in infants and children. Paediatr Anaesth. 1992;2:191–203.

    Article  Google Scholar 

  40. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology. 1990;72:793–6.

    Article  CAS  PubMed  Google Scholar 

  41. Friis-Hansen B. Changes in body water compartments during growth. In: Linneweh F, editor. Die Physiologische Entwicklung des Kindes. Berlin: Springer-Verlag oHG; 1959, Chapter 23.

    Google Scholar 

  42. Johnson KL, Erickson JP, Holley FO, al e. Fentanyl pharmacokinetics in the paediatric population. Anesthesiology. 1984;61:A441.

    Article  Google Scholar 

  43. Luz G, Innerhofer P, Bachmann B, Frischhut B, Menardi G, Benzer A. Bupivacaine plasma concentrations during continuous epidural anesthesia in infants and children. Anesth Analg. 1996;82:231–4.

    CAS  PubMed  Google Scholar 

  44. Luz G, Wieser C, Innerhofer P, Frischhut B, Ulmer H, Benzer A. Free and total bupivacaine plasma concentrations after continuous epidural anaesthesia in infants and children. Paediatr Anaesth. 1998;8:473–8.

    Article  CAS  PubMed  Google Scholar 

  45. Erichsen CJ, Sjovall J, Kehlet H, Hedlund C, Arvidsson T. Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology. 1996;84:834–42.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33:313–27.

    Article  CAS  PubMed  Google Scholar 

  47. Bosenberg AT, Thomas J, Cronje L, et al. Pharmacokinetics and efficacy of ropivacaine for continuous epidural infusion in neonates and infants. Paediatr Anaesth. 2005;15:739–49.

    Article  PubMed  Google Scholar 

  48. Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet. 1998;35:95–134.

    Article  CAS  PubMed  Google Scholar 

  49. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59:691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A. Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl. 2005;11:1481–93.

    Article  PubMed  Google Scholar 

  51. Way WL, Costley EC, Way EL. Respiratory sensitivity of the newborn infant to meperidine and morphine. Clin Pharmacol Ther. 1965;6:454–61.

    Article  CAS  PubMed  Google Scholar 

  52. Pokela ML, Olkkola KT, Seppala T, Koivisto M. Age-related morphine kinetics in infants. Dev Pharmacol Ther. 1993;20:26–34.

    Article  CAS  PubMed  Google Scholar 

  53. Lynn AM, Nespeca MK, Opheim KE, Slattery JT. Respiratory effects of intravenous morphine infusions in neonates, infants, and children after cardiac surgery. Anesth Analg. 1993;77:695–701.

    Article  CAS  PubMed  Google Scholar 

  54. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314:119–29.

    Article  CAS  PubMed  Google Scholar 

  55. Henthorn TK, Liu Y, Mahapatro M, Ng KY. Active transport of fentanyl by the blood-brain barrier. J Pharmacol Exp Ther. 1999;289:1084–9.

    CAS  PubMed  Google Scholar 

  56. Daood MJ, Tsai C, Ahdab-Barmada M, Watchko JF. ABC Transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) Expression in the developing human CNS. Neuropediatrics. 2008;39(4):211.

    Article  CAS  PubMed  Google Scholar 

  57. Hamabe W, Maeda T, Kiguchi N, Yamamoto C, Tokuyama S, Kishioka S. Negative relationship between morphine analgesia and P-glycoprotein expression levels in the brain. J Pharmacol Sci. 2007;105:353–60.

    Article  CAS  PubMed  Google Scholar 

  58. Choudhuri S, Klaassen CD. Structure, function, expression, genomic organization, and single nucleotide polymorphisms of human ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) efflux transporters. Int J Toxicol. 2006;25:231–59.

    Article  CAS  PubMed  Google Scholar 

  59. Hines RN, McCarver DG. The ontogeny of human drug-metabolizing enzymes: phase I oxidative enzymes. J Pharmacol Exp Ther. 2002;300:355–60.

    Article  CAS  PubMed  Google Scholar 

  60. Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308:965–74.

    Article  CAS  PubMed  Google Scholar 

  61. Johnsrud EK, Koukouritaki SB, Divakaran K, Brunengraber LL, Hines RN, McCarver DG. Human hepatic CYP2E1 expression during development. J Pharmacol Exp Ther. 2003;307:402–7.

    Article  CAS  PubMed  Google Scholar 

  62. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    Article  CAS  PubMed  Google Scholar 

  63. Anderson BJ, Hansen TG. Getting the best from pediatric pharmacokinetic data. Paediatr Anaesth. 2004;14:713–5.

    Article  PubMed  Google Scholar 

  64. Chalkiadis GA, Anderson BJ. Age and size are the major covariates for prediction of levobupivacaine clearance in children. Paediatr Anaesth. 2006;16:275–82.

    Article  PubMed  Google Scholar 

  65. Allegaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth. 2005;95:231–9.

    Article  CAS  PubMed  Google Scholar 

  66. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37:485–505.

    Article  PubMed  Google Scholar 

  67. Aronoff DM, Oates JA, Boutaud O. New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin Pharmacol Ther. 2006;79:9–19.

    Article  CAS  PubMed  Google Scholar 

  68. McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002;300:361–6.

    Article  CAS  PubMed  Google Scholar 

  69. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24:25–36.

    Article  CAS  PubMed  Google Scholar 

  70. Bouwmeester NJ, Anderson BJ, Tibboel D, Holford NH. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth. 2004;92:208–17.

    Article  CAS  PubMed  Google Scholar 

  71. Anand KJ, Anderson BJ, Holford NH, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Anderson BJ, Woollard GA, Holford NH. A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol. 2000;50:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anderson BJ, Pons G, Autret-Leca E, Allegaert K, Boccard E. Pediatric intravenous paracetamol (propacetamol) pharmacokinetics: a population analysis. Paediatr Anaesth. 2005;15:282–92.

    Article  PubMed  Google Scholar 

  74. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anaesth. 2008;18:722–30.

    Article  PubMed  Google Scholar 

  75. Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24:67–76.

    Article  PubMed  Google Scholar 

  76. Allegaert K, de Hoon J, Verbesselt R, Naulaers G, Murat I. Maturational pharmacokinetics of single intravenous bolus of propofol. Paediatr Anaesth. 2007;17:1028–34.

    Article  PubMed  Google Scholar 

  77. Allegaert K, Vancraeynest J, Rayyan M, et al. Urinary propofol metabolites in early life after single intravenous bolus. Brit J Anaesth. 2008;

    Google Scholar 

  78. Lynn A, Nespeca MK, Bratton SL, Strauss SG, Shen DD. Clearance of morphine in postoperative infants during intravenous infusion: the influence of age and surgery. Anesth Analg. 1998;86:958–63.

    Article  CAS  PubMed  Google Scholar 

  79. Peters JW, Anderson BJ, Simons SH, Uges DR, Tibboel D. Morphine pharmacokinetics during venoarterial extracorporeal membrane oxygenation in neonates. Intensive Care Med. 2005;31:257–63.

    Article  PubMed  Google Scholar 

  80. Holford NH, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Pediatr Anesth. 2012;22:209–22.

    Article  Google Scholar 

  81. Rigby-Jones AE, Nolan JA, Priston MJ, Wright PM, Sneyd JR, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology. 2002;97:1393–400.

    Article  CAS  PubMed  Google Scholar 

  82. Rigby-Jones AE, Priston MJ, Thorne GC, Tooley MA, Sneyd JR, Wolf AR. Population pharmacokinetics of remifentanil in critically ill post cardiac neonates, infants and children. Brit J Anaesth. 2005;95:578P–9P.

    Google Scholar 

  83. Minto CF, Schnider TW, Egan TD, et al. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I. Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  84. Ross AK, Davis PJ, Dear Gd GL, et al. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg. 2001;93:1393–401.

    Article  CAS  PubMed  Google Scholar 

  85. Kan RE, Hughes SC, Rosen MA, Kessin C, Preston PG, Lobo EP. Intravenous remifentanil: placental transfer, maternal and neonatal effects. Anesthesiology. 1998;88:1467–74.

    Article  CAS  PubMed  Google Scholar 

  86. Egan TD. Pharmacokinetics and pharmacodynamics of remifentanil: an update in the year 2000. Curr Opin Anaesthesiol. 2000;13:449–55.

    Article  CAS  PubMed  Google Scholar 

  87. Cook DR, Wingard LB, Taylor FH. Pharmacokinetics of succinylcholine in infants, children, and adults. Clin Pharmacol Ther. 1976;20:493–8.

    Article  CAS  PubMed  Google Scholar 

  88. Goudsouzian NG, Liu LM. The neuromuscular response of infants to a continuous infusion of succinylcholine. Anesthesiology. 1984;60:97–101.

    Article  CAS  PubMed  Google Scholar 

  89. Sawyer DC, Eger EI 2nd, Bahlman SH, Cullen BF, Impelman D. Concentration dependence of hepatic halothane metabolism. Anesthesiology. 1971;34:230–5.

    Article  CAS  PubMed  Google Scholar 

  90. Langhendries JP, Battisti O, Bertrand JM, et al. Adaptation in neonatology of the once-daily concept of aminoglycoside administration: evaluation of a dosing chart for amikacin in an intensive care unit. Biol Neonate. 1998;74:351–62.

    Article  CAS  PubMed  Google Scholar 

  91. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995;82:689–99.

    Article  CAS  PubMed  Google Scholar 

  92. McNamara DG, Nixon GM, Anderson BJ. Methylxanthines for the treatment of apnea associated with bronchiolitis and anesthesia. Paediatr Anaesth. 2004;14:541–50.

    Article  PubMed  Google Scholar 

  93. Paradisis M, Jiang X, McLachlan AJ, Evans N, Kluckow M, Osborn D. Population pharmacokinetics and dosing regimen design of milrinone in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007;92:F204–9.

    Article  PubMed  Google Scholar 

  94. Fisher DM, O'Keeffe C, Stanski DR, Cronnelly R, Miller RD, Gregory GA. Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology. 1982;57:203–8.

    Article  CAS  PubMed  Google Scholar 

  95. Allegaert K, Cossey V, Debeer A, et al. The impact of ibuprofen on renal clearance in preterm infants is independent of the gestational age. Pediatr Nephrol. 2005;20:740–3.

    Article  PubMed  Google Scholar 

  96. Allegaert K, Cossey V, Langhendries JP, et al. Effects of co-administration of ibuprofen-lysine on the pharmacokinetics of amikacin in preterm infants during the first days of life. Biol Neonate. 2004;86:207–11.

    Article  CAS  PubMed  Google Scholar 

  97. Stephenson T. How children's responses to drugs differ from adults. Brit J Clin Pharmacol. 2005;59:670–3.

    Article  Google Scholar 

  98. LeDez KM, Lerman J. The minimum alveolar concentration (MAC) of isoflurane in preterm neonates. Anesthesiology. 1987;67:301–7.

    Article  CAS  PubMed  Google Scholar 

  99. Lerman J, Robinson S, Willis MM, Gregory GA. Anesthetic requirements for halothane in young children 0-1 month and 1-6 months of age. Anesthesiology. 1983;59:421–4.

    Article  CAS  PubMed  Google Scholar 

  100. Giordano V, Deindl P, Goeral K, et al. The power of N-PASS, aEEG, and BIS in detecting different levels of sedation in neonates: A preliminary study. Pediatr Anesth. 2018;28:1096–104.

    Article  Google Scholar 

  101. Sciusco A, Standing JF, Sheng Y, Raimondo P, Cinnella G, Dambrosio M. Effect of age on the performance of bispectral and entropy indices during sevoflurane pediatric anesthesia: a pharmacometric study. Pediatr Anesth. 2017;27:399–408.

    Article  Google Scholar 

  102. Cornelissen L, Bergin AM, Lobo K, Donado C, Soul JS, Berde CB. Electroencephalographic discontinuity during sevoflurane anesthesia in infants and children. Pediatr Anesth. 2017;27:251–62.

    Article  Google Scholar 

  103. Cornelissen L, Donado C, Lee JM, et al. Clinical signs and electroencephalographic patterns of emergence from sevoflurane anaesthesia in children: An observational study. Eur J Anaesthesiol. 2018;35:49–59.

    Article  PubMed  Google Scholar 

  104. Cornelissen L, Kim SE, Lee JM, Brown EN, Purdon PL, Berde CB. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br J Anaesth. 2018;120:1274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cornelissen L, Kim SE, Purdon PL, Brown EN, Berde CB. Age-dependent electroencephalogram (EEG) patterns during sevoflurane general anesthesia in infants. Elife. 2015;4:e06513.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Koch SC, Fitzgerald M, Hathway GJ. Midazolam potentiates nociceptive behavior, sensitizes cutaneous reflexes, and is devoid of sedative action in neonatal rats. Anesthesiology. 2008;108:122–9.

    Article  CAS  PubMed  Google Scholar 

  107. Tobin JR. Paradoxical effects of midazolam in the very young. Anesthesiology. 2008;108:6–7.

    Article  PubMed  Google Scholar 

  108. Meakin G, Morton RH, Wareham AC. Age-dependent variation in response to tubocurarine in the isolated rat diaphragm. Brit J Anaesth. 1992;68:161–3.

    Article  CAS  PubMed  Google Scholar 

  109. Wareham AC, Morton RH, Meakin GH. Low quantal content of the endplate potential reduces safety factor for neuromuscular transmission in the diaphragm of the newborn rat. Brit J Anaesth. 1994;72:205–9.

    Article  CAS  PubMed  Google Scholar 

  110. Yurka HG, Wissler RN, Zanghi CN, Liu X, Tu X, Eaton MP. The effective concentration of epsilon-aminocaproic Acid for inhibition of fibrinolysis in neonatal plasma in vitro. Anesth Analg. 2010;111:180–4.

    Article  CAS  PubMed  Google Scholar 

  111. Radford D. Side effects of verapamil in infants. Arch Dis Child. 1983;58:465–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Steinberg C, Notterman DA. Pharmacokinetics of cardiovascular drugs in children. Inotropes and vasopressors. Clin Pharmacokinet. 1994;27:345–67.

    Article  CAS  PubMed  Google Scholar 

  113. Seri I, Tulassay T, Kiszel J, Machay T, Csomor S. Cardiovascular response to dopamine in hypotensive preterm neonates with severe hyaline membrane disease. Eur J Pediatr. 1984;142:3–9.

    Article  CAS  PubMed  Google Scholar 

  114. Cuevas L, Yeh TF, John EG, Cuevas D, Plides RS. The effect of low-dose dopamine infusion on cardiopulmonary and renal status in premature newborns with respiratory distress syndrome. Am J Dis Child. 1991;145:799–803.

    CAS  PubMed  Google Scholar 

  115. Seri I, Tulassay T, Kiszel J, et al. Effect of low-dose dopamine infusion on prolactin and thyrotropin secretion in preterm infants with hyaline membrane disease. Biol Neonate. 1985;47:317–22.

    Article  CAS  PubMed  Google Scholar 

  116. Dopamine SI, natriuresis. Mechanism of action and developmental aspects. Am J Hypertens. 1990;3:82S–6S.

    Google Scholar 

  117. Kim HS, Oh AY, Kim CS, Kim SD, Seo KS, Kim JH. Correlation of bispectral index with end-tidal sevoflurane concentration and age in infants and children. Br J Anaesth. 2005;95:362–6.

    Article  CAS  PubMed  Google Scholar 

  118. Davidson AJ. Measuring anesthesia in children using the EEG. Pediatr Anesth. 2006;16:374–87.

    Article  Google Scholar 

  119. Davidson AJ, Huang GH, Rebmann CS, Ellery C. Performance of entropy and Bispectral Index as measures of anaesthesia effect in children of different ages. Brit J Anaesth. 2005;95:674–9.

    Article  CAS  PubMed  Google Scholar 

  120. Davidson AJ, Sale SM, Wong C, et al. The electroencephalograph during anesthesia and emergence in infants and children. Paediatr Anaesth. 2008;18:60–70.

    PubMed  Google Scholar 

  121. Jeleazcov C, Schmidt J, Schmitz B, Becke K, Albrecht S. EEG variables as measures of arousal during propofol anaesthesia for general surgery in children: rational selection and age dependence. Brit J Anaesth. 2007;99:845–54.

    Article  CAS  PubMed  Google Scholar 

  122. Solt K, Forman SA. Correlating the clinical actions and molecular mechanisms of general anesthetics. Curr Opin Anaesthesiol. 2007;20:300–6.

    Article  PubMed  Google Scholar 

  123. Grasshoff C, Drexler B, Rudolph U, Antkowiak B. Anaesthetic drugs: linking molecular actions to clinical effects. Curr Pharm Des. 2006;12:3665–79.

    Article  CAS  PubMed  Google Scholar 

  124. Billard V, Gambus PL, Chamoun N, Stanski DR, Shafer SL. A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther. 1997;61:45–58.

    Article  CAS  PubMed  Google Scholar 

  125. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  CAS  PubMed  Google Scholar 

  126. Jeleazcov C, Ihmsen H, Schmidt J, et al. Pharmacodynamic modelling of the bispectral index response to propofol-based anaesthesia during general surgery in children. Br J Anaesth. 2008;100:509–16.

    Article  CAS  PubMed  Google Scholar 

  127. Fuentes R, Cortinez LI, Contreras V, Ibacache M, Anderson BJ. Propofol pharmacokinetic and pharmacodynamic profile and its electroencephalographic interaction with remifentanil in children. Pediatr Anesth. 2018;28:1079–85.

    Article  Google Scholar 

  128. Peeters MY, Prins SA, Knibbe CA, et al. Propofol Pharmacokinetics and Pharmacodynamics for Depth of Sedation in Nonventilated Infants after Major Craniofacial Surgery. Anesthesiology. 2006;104:466–74.

    Article  CAS  PubMed  Google Scholar 

  129. Iwakiri H, Nishihara N, Nagata O, Matsukawa T, Ozaki M, Sessler DI. Individual effect-site concentrations of propofol are similar at loss of consciousness and at awakening. Anesth Analg. 2005;100:107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. McCormack J, Mehta D, Peiris K, et al. The effect of a target controlled infusion of propofol on predictability of recovery from anesthesia in children. Pediatr Anesth. 2010;20:56–62.

    Article  Google Scholar 

  131. Steur RJ, Perez RS, De Lange JJ. Dosage scheme for propofol in children under 3 years of age. Paediatr Anaesth. 2004;14:462–7.

    Article  CAS  PubMed  Google Scholar 

  132. Kataria BK, Ved SA, Nicodemus HF, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology. 1994;80:104–22.

    Article  CAS  PubMed  Google Scholar 

  133. Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol administered as constant rate intravenous infusions in humans. Anesth Analg. 1987;66:1256–63.

    Article  CAS  PubMed  Google Scholar 

  134. Absalom A, Amutike D, Lal A, White M, Kenny GN. Accuracy of the 'Paedfusor' in children undergoing cardiac surgery or catheterization. Br J Anaesth. 2003;91:507–13.

    Article  CAS  PubMed  Google Scholar 

  135. Anderson BJ. Pediatric models for adult target-controlled infusion pumps. Paediatr Anaesth. 2009;

    Google Scholar 

  136. Ghanta S, Abdel-Latif ME, Lui K, Ravindranathan H, Awad J, Oei J. Propofol compared with the morphine, atropine, and suxamethonium regimen as induction agents for neonatal endotracheal intubation: a randomized, controlled trial. Pediatrics. 2007;119:e1248–55.

    Article  PubMed  Google Scholar 

  137. Papoff P, Mancuso M, Caresta E, Moretti C. Effectiveness and safety of propofol in newborn infants. Pediatrics. 2008;121:448; author reply -9

    Article  PubMed  Google Scholar 

  138. Veyckemans F. Propofol for intubation of the newborn? Pediatr Anesth. 2001;11:630–1.

    Article  CAS  Google Scholar 

  139. Westrin P. The induction dose of propofol in infants 1-6 months of age and in children 10-16 years of age. Anesthesiology. 1991;74:455–8.

    Article  CAS  PubMed  Google Scholar 

  140. Allegaert K. Is propofol the perfect hypnotic agent for procedural sedation in neonates? Curr Clin Pharmacol. 2009;4:84–6.

    Article  CAS  PubMed  Google Scholar 

  141. Welzing L, Kribs A, Eifinger F, Huenseler C, Oberthuer A, Roth B. Propofol as an induction agent for endotracheal intubation can cause significant arterial hypotension in preterm neonates. Pediatric Anesthesia. 2010;20:605–11.

    Article  PubMed  Google Scholar 

  142. Clarke WR. The transitional circulation: physiology and anesthetic implications. J Clin Anesth. 1990;2:192–211.

    Article  CAS  PubMed  Google Scholar 

  143. Williams GD, Jones TK, Hanson KA, Morray JP. The hemodynamic effects of propofol in children with congenital heart disease. Anesth Analg. 1999;89:1411–6.

    Article  CAS  PubMed  Google Scholar 

  144. Lerman J, Heard C, Steward DJ. Neonatal tracheal intubation: an imbroglio unresolved. Pediatric Anesthesia. 2010;20:585–90.

    Article  PubMed  Google Scholar 

  145. Vanderhaegen J, Naulaers G, Van Huffel S, Vanhole C, Allegaert K. Cerebral and systemic hemodynamic effects of intravenous bolus administration of propofol in neonates. Neonatology. 2009;98:57–63.

    Article  PubMed  Google Scholar 

  146. Domek NS, Barlow CF, Roth LJ. An ontogenetic study of phenobarbital-C-14 in cat brain. J Pharmacol Exp Ther. 1960;130:285–93.

    CAS  PubMed  Google Scholar 

  147. Mirkin BL. Perinatal pharmacology: placental transfer, fetal localization, and neonatal disposition of drugs. Anesthesiology. 1975;43:156–70.

    Article  CAS  PubMed  Google Scholar 

  148. Westrin P, Jonmarker C, Werner O. Thiopental requirements for induction of anesthesia in neonates and in infants one to six months of age. Anesthesiology. 1989;71:344–6.

    Article  CAS  PubMed  Google Scholar 

  149. Jonmarker C, Westrin P, Larsson S, Werner O. Thiopental requirements for induction of anesthesia in children. Anesthesiology. 1987;67:104–7.

    Article  CAS  PubMed  Google Scholar 

  150. Glantz LA, Gilmore JH, Hamer RM, Lieberman JA, Jarskog LF. Synaptophysin and postsynaptic density protein 95 in the human prefrontal cortex from mid-gestation into early adulthood. Neuroscience. 2007;149:582–91.

    Article  CAS  PubMed  Google Scholar 

  151. Norman E, Malmqvist U, Westrin P, Fellman V. Thiopental pharmacokinetics in newborn infants: a case report of overdose. Acta Paediatr. 2009;98:1680–2.

    Article  PubMed  Google Scholar 

  152. Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited. Anesthesiology. 1990;72:412–22.

    Article  CAS  PubMed  Google Scholar 

  153. Lindsay WA, Shepherd J. Plasma levels of thiopentone after premedication with rectal suppositories in young children. Br J Anaesth. 1969;41:977–84.

    Article  CAS  PubMed  Google Scholar 

  154. Bonati M, Marraro G, Celardo A, et al. Thiopental efficacy in phenobarbital-resistant neonatal seizures. Dev Pharmacol Ther. 1990;15:16–20.

    Article  CAS  PubMed  Google Scholar 

  155. Garg DC, Goldberg RN, Woo-Ming RB, Weidler DJ. Pharmacokinetics of thiopental in the asphyxiated neonate. Dev Pharmacol Ther. 1988;11:213–8.

    Article  CAS  PubMed  Google Scholar 

  156. Demarquez JL, Galperine R, Billeaud C, Brachet-Liermain A. High-dose thiopental pharmacokinetics in brain-injured children and neonates. Dev Pharmacol Ther. 1987;10:292–300.

    Article  CAS  PubMed  Google Scholar 

  157. Gaspari F, Marraro G, Penna GF, Valsecchi R, Bonati M. Elimination kinetics of thiopentone in mothers and their newborn infants. Eur J Clin Pharmacol. 1985;28:321–5.

    Article  CAS  PubMed  Google Scholar 

  158. Larsson P, Anderson BJ, Norman E, Westrin P, Fellman V. Thiopentone elimination in newborn infants: exploring Michaelis-Menten kinetics. Acta Anaesthesiol Scand. 2011;55:444–51.

    Article  CAS  PubMed  Google Scholar 

  159. Norman E, Westrin P, Fellman V. Placental transfer and pharmacokinetics of thiopentone in newborn infants. Arch Dis Child. 2010;95:F277–82.

    Article  Google Scholar 

  160. Komai H, Rusy BF. Effect of thiopental on Ca2+ release from sarcoplasmic reticulum in intact myocardium. Anesthesiology. 1994;81:946–52.

    Article  CAS  PubMed  Google Scholar 

  161. Grant IS, Nimmo WS, McNicol LR, Clements JA. Ketamine disposition in children and adults. Br J Anaesth. 1983;55:1107–11.

    Article  CAS  PubMed  Google Scholar 

  162. Herd DW, Anderson BJ, Keene NA, Holford NH. Investigating the pharmacodynamics of ketamine in children. Paediatr Anaesth. 2008;18:36–42.

    PubMed  Google Scholar 

  163. Warner DO, Shi Y, Flick RP. Anesthesia and Neurodevelopment in Children: Perhaps the End of the Beginning. Anesthesiology. 2018;128:700–3.

    Article  PubMed  Google Scholar 

  164. Ihmsen H, Geisslinger G, Schuttler J. Stereoselective pharmacokinetics of ketamine: R(-)-ketamine inhibits the elimination of S(+)-ketamine. Clin Pharmacol Ther. 2001;70:431–8.

    Article  CAS  PubMed  Google Scholar 

  165. Cook RD, Davis PJ. Pediatric anesthesia pharmacology. In: Lake CL, editor. Pediatric cardiac anesthesia. 2nd ed. East Norwalk: Appleton & Lange; 1993. p. 134.

    Google Scholar 

  166. Hartvig P, Larsson E, Joachimsson PO. Postoperative analgesia and sedation following pediatric cardiac surgery using a constant infusion of ketamine. J Cardiothorac Vasc Anesth. 1993;7:148–53.

    Article  CAS  PubMed  Google Scholar 

  167. Chang T, Glazko AJ. Biotransformation and disposition of ketamine. Int Anesthesiol Clin. 1974;12:157–77.

    Article  CAS  PubMed  Google Scholar 

  168. Lockhart CH, Nelson WL. The relationship of ketamine requirement to age in pediatric patients. Anesthesiology. 1974;40:507–8.

    Article  CAS  PubMed  Google Scholar 

  169. Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P. Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res. 2004;153:367–76.

    Article  CAS  PubMed  Google Scholar 

  170. Wang C, Sadovova N, Fu X, et al. The role of the N-methyl-D-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience. 2005;132:967–77.

    Article  CAS  PubMed  Google Scholar 

  171. Hansen TG. Use of anesthetics in young children Consensus statement of the European Society of Anaesthesiology (ESA), the European Society for Paediatric Anaesthesiology (ESPA), the European Association of Cardiothoracic Anaesthesiology (EACTA), and the European Safe Tots Anaesthesia Research Initiative (EuroSTAR). Paediatr Anaesth. 2017;27:558–9.

    Article  PubMed  Google Scholar 

  172. Clausen NG, Kahler S, Hansen TG. Systematic review of the neurocognitive outcomes used in studies of paediatric anaesthesia neurotocity. Br J Anaesth. 2018;120:1255–73.

    Article  CAS  PubMed  Google Scholar 

  173. Steward DJ, Creighton RE. The uptake and excretion of nitrous oxide in the newborn. Can Anaesth Soc J. 1978;25:215–7.

    Article  CAS  PubMed  Google Scholar 

  174. Eger EI II. Anesthetic uptake and action. Baltimore: Williams & Wilkins; 1974.

    Google Scholar 

  175. Lerman J, Willis MM, Gregory GA, Eger EI II. Age and the solubility of volatile anesthetics in blood. Anesthesiology. 1984;61:139–43.

    Article  CAS  PubMed  Google Scholar 

  176. Lerman J, Schmitt-Bantel BI, Willis MM, Gregory GA, Eger EI II. Effect of age on the solubility of volatile anesthetics in human tissues. Anesthesiology. 1986;65:307–11.

    Article  CAS  PubMed  Google Scholar 

  177. Lerman J, Gregory GA, Eger EI II. Hematocrit and the solubility of volatile anesthetics in blood. Anesth Analg. 1984;63:911–4.

    Article  CAS  PubMed  Google Scholar 

  178. Yasuda N, Lockhart SH, Eger EI II, Weiskopf RB, Liu J, Laster M, Taheri S, Peterson NA. Comparison kinetics of sevoflurane and isoflurane in humans. Anesth Analg. 1991;72:316–24.

    Article  CAS  PubMed  Google Scholar 

  179. Gibbons RT, Steffey EP, Eger EI II. The effect of spontaneous versus controlled ventilation on the rate of rise of alveolar halothane concentration in dogs. Anesth Analg. 1977;56:32–4.

    Article  CAS  PubMed  Google Scholar 

  180. Huntington JH, Malviya S, Voepel-Lewis T, Lloyd TR, Massey KD. The effect of a right-to-left intracardiac shunt on the rate of rise of arterial and end-tidal halothane in children. Anesth Analg. 1999;88:759–62.

    CAS  PubMed  Google Scholar 

  181. Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology. 1989;70:219–25.

    Article  CAS  PubMed  Google Scholar 

  182. Eger EI II, Johnson BH. Rates of awakening from anesthesia with I-653, halothane, isoflurane and sevoflurane: a test of the effect of anesthetic concentration and duration in rats. Anesth Analg. 1987;66:977–82.

    Article  CAS  PubMed  Google Scholar 

  183. Naito Y, Tamai S, Shingu K, Fujimori R, Mori K. Comparison between sevoflurane and halothane for paediatric ambulatory anaesthesia. Br J Anaesth. 1991;67:387–9.

    Article  CAS  PubMed  Google Scholar 

  184. Davis PJ, Cohen IT, McGowan FX, Latta K. Recovery characteristics of desflurane versus halothane for maintenance of anesthesia in pediatric ambulatory patients. Anesthesiology. 1994;84:298–302.

    Article  Google Scholar 

  185. Sarner JB, Levine M, Davis PJ, Lerman J, Cook RD, Motoyama EK. Clinical characteristics of sevoflurane in children: a comparison with halothane. Anesthesiology. 1995;82:38–46.

    Article  CAS  PubMed  Google Scholar 

  186. Bould MD, Sury MR. Defining awakening from anesthesia in neonates: a consensus study. Pediatr Anesth. 2011;21:259–63.

    Article  Google Scholar 

  187. O'Brien K, Robinson DN, Morton NS. Induction and emergence in infants less than 60 weeks post-conceptual age: comparison of thiopental, halothane, sevoflurane and desflurane. Br J Anaesth. 1998;80:456–9.

    Article  CAS  PubMed  Google Scholar 

  188. Gregory GA, Eger EI II, Munson ES. The relationship between age and halothane requirement in man. Anesthesiology. 1969;30:488–91.

    Article  CAS  PubMed  Google Scholar 

  189. Diaz JH, Lockhart CH. Is halothane really safe in infancy? Anesthesiology. 1979;51:S313.

    Article  Google Scholar 

  190. Taylor RH, Lerman J. Minimum alveolar concentration (MAC) of desflurane and hemodynamic responses in neonates, infants and children. Anesthesiology. 1991;75:975–9.

    Article  CAS  PubMed  Google Scholar 

  191. Lerman J, Kleinman S, Yentis SW, Sikich N. Pharmacology of sevoflurane in infants and children. Anesthesiology. 1994;80:814–24.

    Article  CAS  PubMed  Google Scholar 

  192. Cameron CB, Robinson S, Gregory GA. The minimum anesthetic concentration of isoflurane in children. Anesth Analg. 1984;63:418–20.

    Article  CAS  PubMed  Google Scholar 

  193. Baum VC, Palmisano BW. The immature heart and anesthesia. Anesthesiology. 1997;87:1529–48.

    Article  CAS  PubMed  Google Scholar 

  194. Murray DJ, Forbes RB, Mahoney LT. Comparative hemodynamic depression of halothane versus isoflurane in neonates and infants: an echocardiographic study. Anesth Analg. 1992;74:329–37.

    Article  CAS  PubMed  Google Scholar 

  195. Murat I, Lapeyre G, Saint-Maurice C. Isoflurane attenuates baroreflex control of heart rate in human neonates. Anesthesiology. 1989;70:395–400.

    Article  CAS  PubMed  Google Scholar 

  196. Wolf AR, Humphrey AT. Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Ped Anesth. 2014;24:5–9.

    Article  Google Scholar 

  197. Barash PG, Glanz S, Katz JD, Taunt K, Talner NS. Ventricular function in children during halothane anaesthetic: an echocardiographic evaluation. Anesthesiology. 1978;49:79–85.

    Article  CAS  PubMed  Google Scholar 

  198. Frei FJ, Haemmerle MH, Brunner R, Kern C. Minimum alveolar concentration for halothane in children with cerebral palsy and severe mental retardation. Anaesthesia. 1997;52:1056–60.

    Article  CAS  PubMed  Google Scholar 

  199. Tsunoda Y, Hattori Y, Takatsuka E, et al. Effects of hydroxyzine, diazepam and pentazocine on halothane minimal alveolar anesthetic concentration. Anesth Analg. 1973;52:390–4.

    Article  CAS  PubMed  Google Scholar 

  200. Perisho JA, Beuchel DR, Miller RD. The effect of diazepam (Valium®) on minimum alveolar anaesthetic requirement (MAC) in man. Can Anaesth Soc J. 1971;18:536–40.

    Article  CAS  PubMed  Google Scholar 

  201. Viegas O, Stoelting RK. Halothane MAC in dogs unchanged by phenobarbital. Anesth Analg. 1976;55:677–9.

    Article  CAS  PubMed  Google Scholar 

  202. Liem EB, Lin CM, Suleman MI, et al. Anesthetic requirement is increased in redheads. Anesthesiology. 2004;101:279–83.

    Article  CAS  PubMed  Google Scholar 

  203. Murray DJ, Mehta MP, Forbes RB, Dull DL. Additive contribution of nitrous oxide to halothane MAC in infants and children. Anesth Analg. 1990;71:120–4.

    Article  CAS  PubMed  Google Scholar 

  204. Murray DJ, Mehta MP, Forbes RB. The additive contribution of nitrous oxide to isoflurane MAC in infants and children. Anesthesiology. 1991;75:186–90.

    Article  CAS  PubMed  Google Scholar 

  205. Fisher DM, Zwass MS. MAC of desflurane in 60% nitrous oxide in infants and children. Anesthesiology. 1992;76:354–6.

    Article  CAS  PubMed  Google Scholar 

  206. Swan HD, Crawford MW, Pua HL, Stephens D, Lerman J. Additive contribution of nitrous oxide to sevoflurane MAC for tracheal intubation in children. Anesthesiology. 1999;91:667–71.

    Article  CAS  PubMed  Google Scholar 

  207. Mellor DJ, Lerman J. Anesthesia for neonatal emergencies. Seminar Perinatol. 1998;22:363–79.

    Article  CAS  Google Scholar 

  208. Anderson BJ, Lerman J, Coté CJ. Pharmacokinetics and pharmacology of drugs used in children, Chapter 7. In: Coté CJ, Lerman J, Anderson BJ, editors. Coté & Lerman’s, A Practice of Anesthesia for Infants and Children. 6th ed. Phila, PA: Elsevier; 2016.

    Google Scholar 

  209. Vutskits L. Cerebral blood flow in the neonate. Pediatr Aneth. 2014;24:22–9.

    Article  Google Scholar 

  210. Eger EI II. Isoflurane: A review. Anesthesiology. 1981;55:559–76.

    Article  PubMed  Google Scholar 

  211. Bedforth NM, Girling KJ, Skinner HJ, et al. Effects of desflurane on cerebral autoregulation. Br J Anaesth. 2001;87:193–7.

    Article  CAS  PubMed  Google Scholar 

  212. Holmstrom A, Rosen I, Akeson J. Desflurane results in higher cerebral blood flow than sevoflurane or isoflurane at hypocapnea in pigs. Acta Anaesthesiol Scand. 2004;48:400–4.

    Article  CAS  PubMed  Google Scholar 

  213. Leon J, Bissonnette B. Cerebrovascular response to carbon dioxide in children anaesthetized with halothane and isoflurane. Can J Anaesth. 1991;38:817–24.

    Article  CAS  PubMed  Google Scholar 

  214. Paut O, Lazzell VA, Bissonnette B. The effect of low concentrations of halothane on the cerebrovascular circulation in young children. Anesthesia. 2000;55:528–31.

    Article  CAS  Google Scholar 

  215. Rhondali O, Pouyay A, Mahr A, et al. Sevoflurane anesthesia and brain perfusion. Pediatr Anesth. 2015;25:180–5.

    Article  Google Scholar 

  216. Scheller MS, Tateishi A, Drummond JC, Zornow MH. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology. 1988;68:548–51.

    Article  CAS  PubMed  Google Scholar 

  217. Rampil IJ, Weiskopf RB, Brown J, Eger EI II, Johnson B, Holmes MA, Donegan JH. I-653 and isoflurane produce similar dose-related changes in the electroencephalogram of pigs. Anesthesiology. 1988;69:298–302.

    Article  CAS  PubMed  Google Scholar 

  218. Constant I, Dubois MC, Piat V, Moutard ML, McCue M, Murat I. Changes in electroencephalographic and autonomic cardiovascular activity during induction of anesthesia with sevoflurane compared with halothane or in children. Anesthesiology. 1999;91:1604–15.

    Article  CAS  PubMed  Google Scholar 

  219. Hayashi K, Shigemi K, Sawa T. Neonatal electroencephalography shows low sensitivity to anesthesia. Neurosci Lett. 2012;517:87–91.

    Article  CAS  PubMed  Google Scholar 

  220. Poorun R, Hartley C, Goksan S, et al. Electroencephalography during general anaesthesia differs between term-born and premature-born children. Clinical Neurophysiology. 2016;127:1216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cornelissen L, Kim SE, Lee JM, Brown EN, Purdon PL, Berde CB. Electroencephalographic markers of brain development during sevofurane anaesthesia in children up to 3 years old. Br J Anaesth. 2018;120:1274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kim HS, Oh AY, Kim CS, et al. Correlation of bispectral index with end-tidal sevoflurane concentration and age in infants and children. Br J Anaesth. 2005;95:362–6.

    Article  CAS  PubMed  Google Scholar 

  223. Edwards JJ, Soto RG, Bedford RF. Bispectral IndexTM values are higher during halothane vs. sevoflurane anesthesia in children, but not in infants. Acta Anaesthesiol Scand. 2005;49:1084–7.

    Article  CAS  PubMed  Google Scholar 

  224. Adachi M, Ikemoto Y, Kubo K, Takuma C. Seizure-like movements during induction of anesthesia with sevoflurane. Br J Anaesth. 1992;68:214–5.

    Article  CAS  PubMed  Google Scholar 

  225. Komatsu H, Taie S, Endo S, et al. Electrical seizures during sevoflurane anesthesia in two pediatric patients with epilepsy. Anesthesiology. 1994;81:1535–7.

    Article  CAS  PubMed  Google Scholar 

  226. Zacharias M. Convulsive movements with sevoflurane in children. Anaesth Intens Care. 1997;25:727.

    CAS  Google Scholar 

  227. Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, et al. Electroencephalographic evidence of seizure activity under deep sevoflurane anesthesia in a nonepileptic patient. Anesthesiology. 1997;87:1579–82.

    Article  CAS  PubMed  Google Scholar 

  228. Voss LJ, Sleigh JW, Barnard JPM, et al. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107:1689–703.

    Article  PubMed  Google Scholar 

  229. Hsieh SW, Lan KM, Luk HN, et al. Postoperative seizures after sevoflurane anesthesia in a neonate. Acta Anaesthesiol Scand. 2004;48:662.

    Article  Google Scholar 

  230. Costerus SA, van Hoorn CE, Hendrikx D, et al. Towards integrative neuromonitoring of the surgical newborn: a systematic review. Eur J Anaesthesiol. 2020;37:701–12.

    Article  PubMed  Google Scholar 

  231. Vasudevan C, Levene M. Epidemiology and aetiology of neonatesseizures. Sem Fetal Neo Med. 2013;18:185–91.

    Article  Google Scholar 

  232. Aaberg KM, Gunnes N, Bakken IJ, et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics. 2017;139(5):e20163908.

    Article  PubMed  Google Scholar 

  233. Voss LJ, Slieigh JW, JPM B, Kirsch HE. The Howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107:1689–703.

    Article  PubMed  Google Scholar 

  234. Wolf WJ, Neal MB, Peterson MD. The hemodynamic and cardiovascular effects of isoflurane and halothane anesthesia in children. Anesthesiology. 1986;64:328–33.

    Article  CAS  PubMed  Google Scholar 

  235. Murray D, Vandewalker G, Matherne P, Mahoney LT. Pulsed doppler and two-dimensional echocardiography: comparison of halothane and isoflurane on cardiac function in infants and small children. Anesthesiology. 1987;67:211–7.

    Article  CAS  PubMed  Google Scholar 

  236. Kawana S, Wachi J, Nakayama M, et al. Comparison of haemodynamic changes induced by sevoflurane and halothane in paediatric patients. Can J Anaesth. 1995;42:603–7.

    Article  CAS  PubMed  Google Scholar 

  237. Holzman RS, Vandervelde VE, Kaus SJ, et al. Sevoflurane depresses myocardial contractility less than halothane during induction of anesthesia in children. Anesthesiology. 1996;85:1260–7.

    Article  CAS  PubMed  Google Scholar 

  238. Turner NM. Introperative hypotension in neonates: when and how should we intervene? Curr Opin Anesthesiol. 2015;28:308–15.

    Article  Google Scholar 

  239. Gorges M, West NC, Karlsdottir E, et al. Developing an objective method for analyzing vital signs changes in neonates during general anesthesia. Pediatr Anesth. 2016;26:1071–81.

    Article  Google Scholar 

  240. Simpao AF, Ahumada LM, Galvez JA, et al. The timing and prevalence of intraoperative hypotension in infants undergoing laparoscopic pyloromyotomy at a tertiary pediatric hospital. Pediatr Anesth. 2017;27:66–76.

    Article  Google Scholar 

  241. Weber F, Koning L, Scoones GP. Defining hypotension in anesthestized infants by individual awake blood pressure values: a prospective observational study. Pediatr Anesth. 2017;27:377–84.

    Article  Google Scholar 

  242. Weber F, Honing GHM, Scoones GP. Arterial blood pressure in anesthetized neonates and infants: a retrospective analysis of 1091 cases. Pediatr Anesth. 2016;26:815–22.

    Article  Google Scholar 

  243. Michelet D, Arslan O, Hilly J, et al. Intraoperative changes in blood pressure associated with cerebral desaturation in infants. Pediatr Anesth. 2015;25:681–8.

    Article  Google Scholar 

  244. Olbrecht VA, Skowno J, Marchesini V, et al. An international, multicenter, observational study of cerebral oxygenation during infant and neonatal anesthesia. Anesthesiology. 2018;128:85–96.

    Article  PubMed  Google Scholar 

  245. Wodey E, Pladys P, Copin C, et al. Comparative hemodynamic depression of sevoflurane versus halothane in infants. Anesthesiology. 1997;87:795–800.

    Article  CAS  PubMed  Google Scholar 

  246. Friesen RH, Lichtor JL. Cardiovascular depression during halothane anesthesia in infants: a study of three induction techniques. Anesth Analg. 1982;61:42–5.

    Article  CAS  PubMed  Google Scholar 

  247. Sagarminaga J, Wynands JE. Atropine and the electrical activity of the heart during induction of anaesthesia in children. Can Anaesth Soc J. 1963;10:328–41.

    Article  CAS  PubMed  Google Scholar 

  248. Schmidt U, Schwinger RH, Bohm S, et al. Evidence for an interaction of halothane with the L-type Ca2+ channel in human myocardium. Anesthesiology. 1993;79:332–9.

    Article  CAS  PubMed  Google Scholar 

  249. Baum VC, Wetzel GT. Sodium-calcium exchange in neonatal myocardium: reversible inhibition by halothane. Anesth Analg. 1994;78:1105–9.

    Article  CAS  PubMed  Google Scholar 

  250. Kanaya N, Kawana S, Tsuchida H, Miyamoto A, Ohshika H, Namiki A. Comparative myocardial depression of sevoflurane, isoflurane, and halothane in cultured neonatal rat ventricular myocytes. Anesth Analg. 1998;87:1041–7.

    Article  CAS  PubMed  Google Scholar 

  251. Krane EJ, Su JY. Comparison of the effects of halothane on newborn and adult rabbit myocardium. Anesth Analg. 1987;66:1240–4.

    Article  CAS  PubMed  Google Scholar 

  252. Palmisano BW, Mehner RW, Stowe DF, Bosnjak ZJ, Kampine JP. Direct myocardial effects of halothane and isoflurane: comparison between adult and infant rabbits. Anesthesiology. 1994;81:718–29.

    Article  CAS  PubMed  Google Scholar 

  253. Murat I, Hoerter J, Ventura-Clapier R. Developmental changes in effects of halothane and isoflurane on contractile properties of rabbit cardiac skinned fibers. Anesthesiology. 1990;73:137–45.

    Article  CAS  PubMed  Google Scholar 

  254. Murat I, Ventura-Clapier R, Vassort G. Halothane, enflurane, and isoflurane decrease calcium sensitivity and maximal force in detergent treated rat cardiac fibers. Anesthesiology. 1988;69:892–9.

    Article  CAS  PubMed  Google Scholar 

  255. Gregory GA. The baroresponses of preterm infants during halothane anesthesia. Can Anaes Soc J. 1982;29:105–7.

    Article  CAS  Google Scholar 

  256. Palmisano BW, Setlock MA, Brown MP, Siker D, Tripuraneni R. Dose-response for atropine and heart rate in infants and children anesthetized with halothane and nitrous oxide. Anesthesiology. 1991;75:238–42.

    Article  CAS  PubMed  Google Scholar 

  257. Hayashi Y, Sumikawa K, Tashiro C, Yamatodani A, Yoshiya I. Arrhythmogenic threshold of epinephrine during sevoflurane, enflurane, and isoflurane anesthesia in dogs. Anesthesiology. 1988;69:145–7.

    Article  CAS  PubMed  Google Scholar 

  258. Johnston RR, Eger EI II, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg. 1976;55:709–12.

    Article  CAS  PubMed  Google Scholar 

  259. Karl HW, Swedlow MD, Lee KW, Downes JJ. Epinephrine-halothane interactions in children. Anesthesiology. 1983;58:142–5.

    Article  CAS  PubMed  Google Scholar 

  260. Taylor RH, Lerman J. Induction and recovery characteristics for desflurane in children. Can J Anaesth. 1992;39:6–13.

    Article  CAS  PubMed  Google Scholar 

  261. Piat V, Dubois M-C, Johanet S, Murat I. Induction and recovery characteristics and hemodynamic responses to sevoflurane and halothane in children. Anesth Analg. 1994;79:840–4.

    Article  CAS  PubMed  Google Scholar 

  262. Kern C, Erb T, Frei F. Haemodynamic response to sevoflurane compared with halothane during inhalational induction in children. Paed Anaesth. 1997;7:439–44.

    Article  CAS  Google Scholar 

  263. Friesen RH, Lichtor JL. Cardiovascular effects of inhalation induction with isoflurane in infants. Anesth Analg. 1983;62:411–4.

    Article  CAS  PubMed  Google Scholar 

  264. Weiskopf RB, Eger EI II, Holmes MA, et al. Epinephrine-induced premature ventricular contractions and changes in arterial blood pressure and heart rate during I-653, Isoflurane, and halothane anesthesia in swine. Anesthesiology. 1989;70:293–8.

    Article  CAS  PubMed  Google Scholar 

  265. Lindahl SGE, Yates AP, Hatch DJ. Respiratory depression at different end-tidal halothane concentrations. Anaesthesia. 1987;42:1267–75.

    Article  CAS  PubMed  Google Scholar 

  266. Murat I, Chaussain J, Hamza J, Saint-Maurice CL. The respiratory effects of isoflurane, enflurane and halothane in spontaneously breathing children. Anaesthesia. 1987;42:711–8.

    Article  CAS  PubMed  Google Scholar 

  267. Wren WS, Allen P, Synnott A, O'Keeffe D, O'Griofa P. Effects of halothane, isoflurane and enflurane on ventilation in children. Br J Anaesth. 1987;59:399–409.

    Article  CAS  PubMed  Google Scholar 

  268. Brown KA, Reich O, Bates JHT. Ventilatory depression by halothane in infants and children. Can J Anaesth. 1995;42:588–96.

    Article  CAS  PubMed  Google Scholar 

  269. Brown KA, Aun C, Stocks J, Jackson E, Mackersie A, Hatch D. A comparison of the respiratory effects of sevoflurane and halothane in infants and young children. Anesthesiology. 1998;89:86–92.

    Article  CAS  PubMed  Google Scholar 

  270. Reignier J, Ben Ameur M, Ecoffey C. Spontaneous ventilation with halothane in children. Anesthesiology. 1995;83:674–8.

    Article  CAS  PubMed  Google Scholar 

  271. Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg. 1987;66:241–4.

    Article  CAS  PubMed  Google Scholar 

  272. Murat I, Saint-Maurice JP, Beydon L, Macgee K. Respiratory effects of nitrous oxide during isoflurane anaesthesia in children. Br J Anaesth. 1986;58:1122–9.

    Article  CAS  PubMed  Google Scholar 

  273. Doi M, Ikeda K. Postanesthetic respiratory depression in humans: a comparison of sevoflurane, isoflurane and halothane. J Anesthesia. 1987;1:137–42.

    Article  CAS  Google Scholar 

  274. Yamakage M, Tamiya K, Horikawa D, et al. Effects of halothane and sevoflurane on the paediatric respiratory pattern. Paed Anaesth. 1994;4:53–6.

    Article  Google Scholar 

  275. Mori N, Suzuki M. Sevoflurane in paediatric anaesthesia: effects on respiration and circulation during induction and recovery. Paed Anaesth. 1996;6:95–102.

    Article  CAS  Google Scholar 

  276. Komatsu H, Chujo K, Morita J, et al. Spontaneous breathing with the use of a laryngeal mask airway in children: comparison of sevoflurane and isoflurane. Paed Anaesth. 1997;7:111–5.

    Article  CAS  Google Scholar 

  277. Behforouz N, Dubousset AM, Jamali S, Ecoffey C. Respiratory effects of desflurane anesthesia on spontaneous ventilation in infants and children. Anesth Analg. 1998;87:1052–5.

    Article  CAS  PubMed  Google Scholar 

  278. Walpole R, Olday J, Haetzman M, et al. A comparison of the respiratory effects of high concentrations of halothane and sevoflurane. Pediatr Anesth. 2001;11:157–60.

    Article  CAS  Google Scholar 

  279. Kharasch ED, Thummel KE. Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993;79:795–807.

    Article  CAS  PubMed  Google Scholar 

  280. Arnold JH, Truog RD, Rice SA. Prolonged administration of isoflurane to pediatric patients during mechanical ventilation. Anesth Analg. 1993;76:520–6.

    Article  CAS  PubMed  Google Scholar 

  281. Kharasch ED, Karol MD, Lanni C, Sawchuk R. Clinical sevoflurane metabolism and disposition I. Sevoflurane and metabolite pharmacokinetics. Anesthesiology. 1995;82:1369–78.

    Article  CAS  PubMed  Google Scholar 

  282. Mazze RI, Calverley RK, Smith T. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology. 1977;46:265–71.

    Article  CAS  PubMed  Google Scholar 

  283. Higuchi H, Sumikura H, Sumita S, et al. Renal function in patients with high serum fluoride concentrations after prolonged sevoflurane anesthesia. Anesthesiology. 1995;83:449–58.

    Article  CAS  PubMed  Google Scholar 

  284. Frink EJ, Malan TP, Isner J, et al. Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology. 1994;80:1019–25.

    Article  CAS  PubMed  Google Scholar 

  285. Munday IT, Stoddart PA, Jones RM, Lytle J, Cross MR. Serum fluoride concentration and urine osmolality after enflurane and sevoflurane anesthesia in male volunteers. Anesth Analg. 1995;81:353–9.

    CAS  PubMed  Google Scholar 

  286. Jones RM, Koblin DD, Cashman JN, et al. Biotransformation and hepato-renal function in volunteers after exposure to desflurane (I-653). Br J Anaesth. 1990;64:482–7.

    Article  CAS  PubMed  Google Scholar 

  287. Cousins MH, Mazze RI, Kosek JC, et al. The etiology of methoxyflurane nephrotoxicity. J Pharm Exp Ther. 1974;190:530–41.

    CAS  Google Scholar 

  288. Cousins MJ, Mazze RI. Methoxyflurane nephrotoxicity: a study of dose response in man. JAMA. 1973;225:1611–6.

    Article  CAS  PubMed  Google Scholar 

  289. Stoelting RK, Peterson C. Methoxyflurane anesthesia in pediatric patients: evaluation of anesthetic metabolism and renal function. Anesthesiology. 1975;42:26–9.

    Article  CAS  PubMed  Google Scholar 

  290. Oikkonen M, Meretoja O. Serum fluoride in children anaesthetized with enflurane. Eur J Anaesth. 1989;6:401–7.

    CAS  Google Scholar 

  291. Hinkle AJ. Serum inorganic fluoride levels after enflurane in children. Anesth Analg. 1989;68:396–9.

    Article  CAS  PubMed  Google Scholar 

  292. Levine MF, Sarner J, Lerman J, Davis P, Sikich N, Maloney K, Motoyama E, Cook DR. Plasma inorganic fluoride concentrations after sevoflurane anesthesia in children. Anesthesiology. 1996;84:348–53.

    Article  CAS  PubMed  Google Scholar 

  293. Kharasch ED, Armstrong AS, Gunn K, Artru A, Cox K, Karol MD. Clinical sevoflurane metabolism and disposition: II. The role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology. 1995;82:1379–88.

    Article  CAS  PubMed  Google Scholar 

  294. Kharasch ED, Thummel KE, Mautz D, Bosse S. Clinical enflurane metabolism by cyto P450-2E1. Clin Pharm Ther. 1994;55:434–40.

    Article  CAS  Google Scholar 

  295. Kharasch ED, Hankins DC, Cox K. Clinical isoflurane metabolism by CYP450 2E1. Anesthesiology. 1999;90:766–71.

    Article  CAS  PubMed  Google Scholar 

  296. Kharasch ED, Schroeder JL, Liggitt D, Ensign D, Whittington D. New insights into the mechanism of methoxyflurane nephrotoxicity and implications for anesthestic development (Part 2). Identification of nephrotoxic metabolites. Anesthesiology. 2006;105:737–45.

    Article  CAS  PubMed  Google Scholar 

  297. Xing N, Wei X, Chang Y, Du Y, Zhang W. Effects of low-flow sevoflurane anesthesia on renal function in low birth weight infants. BMC Anesthesiol. 2015;15:6.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Carey RMT, Van Dyke RA. Halothane hepatitis: a critical review. Anesth Analg. 1972;51:135–60.

    Google Scholar 

  299. Lewis JH, Zimmerman HJ, Ishak KG, Mullick FG. Enflurane hepatotoxicity: a clinicopathological study of 24 cases. Ann Intern Med. 1983;98:984–92.

    Article  CAS  PubMed  Google Scholar 

  300. Carrigan TW, Straughen WJ. A report of hepatic necrosis and death following isoflurane anesthesia. Anesthesiology. 1987;67:581–3.

    Article  CAS  PubMed  Google Scholar 

  301. Martin JL, Pleverk DJ, Flannery KD, Charlton M, et al. Hepatotoxicity after desflurane anesthesia. Anesthesiology. 1995;83:1125–9.

    Article  CAS  PubMed  Google Scholar 

  302. Turillazzi E, D’Errico S, Neri M, et al. A fatal case of fulminant hepatic necrosis following sevoflurane anesthesia. Toxicol Pathol. 2007;35:840–5.

    Article  PubMed  Google Scholar 

  303. Bishop B, Hannah N, Doyle A, et al. A prospective study of the incidence of drug-induced liver injury by the modern volatile anaesthetics sevoflurane and desflurane. Aliment Pharmacol Ther. 2019;49:940–51.

    Article  CAS  PubMed  Google Scholar 

  304. Kenna JG, Neuberger J, Mieli-Vergani G, Mowat AP, Williams R. Halothane hepatitis in children. Br Med J. 1989;294:1209–11.

    Article  Google Scholar 

  305. Jang Y, Kim I. Severe hepatotoxicity after sevoflurane anesthesia in a child with mild renal dysfunction. Pediatr Anesth. 2005;15:1140–4.

    Google Scholar 

  306. Taivainen T, Tiainen P, Meretoja OA, Raiha L, Rosenberg PH. Comparison of the effects of sevoflurane and halothane on the quality of anaesthesia and serum glutathione transferase alpha and fluoride in paediatric patients. Br J Anaesth. 1994;73:590–5.

    Article  CAS  PubMed  Google Scholar 

  307. Wark H, Earl J, Chau DD, Overton J. Halothane metabolism in children. Br J Anaesth. 1990;64:474–81.

    Article  CAS  PubMed  Google Scholar 

  308. Fisher DM, Robinson S, Brett CM, Perin G, Gregory GA. Comparison of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology. 1985;63:647–50.

    Article  CAS  PubMed  Google Scholar 

  309. Lindgren L, Randell T, Saarnivaara L. Comparison of inhalation induction with isoflurane and halothane in children. Eur J Anaesth. 1991;8:33–7.

    CAS  Google Scholar 

  310. Zwass MS, Fisher DM, Welborn LG, et al. Induction and maintenance characteristics of anesthesia with desflurane and nitrous oxide in infants and children. Anesthesiology. 1992;76:373–8.

    Article  CAS  PubMed  Google Scholar 

  311. Lerman J, Davis PJ, Welborn LG, et al. Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery: a comparison with halothane. Anesthesiology. 1996;84:1332–40.

    Article  CAS  PubMed  Google Scholar 

  312. Black A, Sury RJ, Hemington L, Howard R, Mackersie A, Hatch DJ. A comparison of the induction characteristics of sevoflurane and halothane in children. Anaesthesia. 1996;51:539–42.

    Article  CAS  PubMed  Google Scholar 

  313. Agnor RC, Sikich N, Lerman J. Single breath vital capacity rapid inhalation induction in children: 8% sevoflurane versus 5% halothane. Anesthesiology. 1998;89:379–84.

    Article  CAS  PubMed  Google Scholar 

  314. Ho KY, Chua WL, Lim SS, Ng AS. A comparison between single- and double-breath vital capacity inhalation induction with 8% sevoflurane in children. Pediatr Anesth. 2004;14:457–61.

    Article  Google Scholar 

  315. Lee SY, Cheng SL, Ng SB, Lim SL. Single-breath vital capacity high concentration sevoflurane induction in children: with or without nitrous oxide? Br J Anaesth. 2013;110:81–6.

    Article  CAS  PubMed  Google Scholar 

  316. Russell IA, Miller Hance WC, Gregory G, et al. The safety and efficacy of sevoflurane anesthesia in infants and children with congenital heart disease. Anesth Analg. 2001;92:1152–8.

    Article  CAS  PubMed  Google Scholar 

  317. Dalal PG, Corner A, Chin C, et al. Comparison of the cardiovasculareffects of isoflurane and sevoflurane as measured by magnetic resonance imaging in children with congenital heart disease. J Clin Anesth. 2008;20:40–4.

    Article  CAS  PubMed  Google Scholar 

  318. Rivenes SM, Lewin MB, Stayer SA, et al. Cardiovascular effects of sevoflurane, isoflurane, halothane, and fentanyl-midazolam in children with congenital heart disease: an echocardiographic study of myocardial contractility and hemodynamics. Anesthesiology. 2001;94:223–9.

    Article  CAS  PubMed  Google Scholar 

  319. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers: a comparison with isoflurane. Anesthesiology. 1993;79:444–53.

    Article  CAS  PubMed  Google Scholar 

  320. Ishikawa T, Nishino T, Hiraga K. Immediate responses of arterial blood pressure and heart rate to sudden inhalation of high concentrations of isoflurane in normotensive and hypertensive patients. Anesth Analg. 1993;77:1022–5.

    Article  CAS  PubMed  Google Scholar 

  321. Ebert TJ, Muzi M, Lopatka CW. Neurocirculatory responses to sevoflurane in humans: a comparison to desflurane. Anesthesiology. 1995;83:88–95.

    Article  CAS  PubMed  Google Scholar 

  322. Weiskopf RB, Moore MA, Eger EI II, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology. 1994;80:1035–45.

    Article  CAS  PubMed  Google Scholar 

  323. Weiskopf RB, Eger EI II, Noorani M, Daniel M. Repetitive rapid increases in desflurane concentration blunt transient cardiovascular stimulation in humans. Anesthesiology. 1994;81:843–9.

    Article  CAS  PubMed  Google Scholar 

  324. Moore MA, Weiskopf RB, Eger EI II, et al. Rapid 1% increases of end-tidal desflurane concentration to greater than 5% transiently increases heart rate and blood pressure in humans. Anesthesiology. 1994;81:94–8.

    Article  CAS  PubMed  Google Scholar 

  325. Weiskopf RB, Eger EI II, Noorani M. Fentanyl, esmolol and clonidine blunt the transient cardiovascular stimulation induced by desflurane in humans. Anesthesiology. 1994;81:1350–5.

    Article  CAS  PubMed  Google Scholar 

  326. Muzi M, Ebert TJ, Hope WG, Robinson BJ, Bell LB. Site(s) medicating sympathetic activation with desflurane. Anesthesiology. 1996;85:737–47.

    Article  CAS  PubMed  Google Scholar 

  327. Weiskopf RB, Eger EI II, Daniel M, Noorani M. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology. 1995;83:1173–8.

    Article  CAS  PubMed  Google Scholar 

  328. O’Brien K, Robinson DN, Morton N. Induction and emergence in infants less than 60 weeks post-conceptual age: comparison of thiopental, halothane, sevoflurane and desflurane. Br J Anaesth. 1998;80:456–9.

    Article  PubMed  Google Scholar 

  329. Valley RD, Ramza JT, Calhoun P, et al. Tracheal extubation of deeply anesthetized pediatric patients: a comparison of isoflurane and sevoflurane. Anesth Analg. 1999;88:742–5.

    Article  CAS  PubMed  Google Scholar 

  330. Meretoja OA, Taivainen T, Raiha L, et al. Sevoflurane-nitrous oxide or halothane-nitrous oxide for paediatric bronchoscopy and gastroscopy. Br J Anaesth. 1996;76:767–71.

    Article  CAS  PubMed  Google Scholar 

  331. Sury MRJ, Black A, Hemington L, et al. A comparison of the recovery characteristics of sevoflurane and halothane in children. Anaesthesia. 1996;51:543–6.

    Article  CAS  PubMed  Google Scholar 

  332. Wolf AR, Lawson RA, Dryden CM, Davies FW. Recovery after desflurane anaesthesia in the infant; comparison with isoflurane. Br J Anaesth. 1996;76:362–4.

    Article  CAS  PubMed  Google Scholar 

  333. Sale SM, Read JA, Stoddart PA, Wolf AR. Prospective comparison of sevoflurane and desflurane in formerly premature infants undergoing inguinal herniotomy. Br J Anaesth. 2006;96:774–8.

    Article  CAS  PubMed  Google Scholar 

  334. Neumann MA, Weiskopf RB, Gong DH, Eger EI II, Ionescu P. Changing from isoflurane to desflurane toward the end of anesthesia does not accelerate recovery in humans. Anesthesiology. 1998;88:914–21.

    Article  CAS  PubMed  Google Scholar 

  335. Davis PJ, Greenberg JA, Gendelman M, Fertal K. Recovery characteristics of sevoflurane and halothane in preschool-aged children undergoing bilateral myringotomy and pressure equalization tube insertion. Anesth Analg. 1999;88:34–8.

    Article  CAS  PubMed  Google Scholar 

  336. Aono J, Ueda W, Mamiya K, Takimoto E, Manabe M. Greater incidence of delirium during recovery from sevoflurane anesthesia in preschool boys. Anesthesiology. 1997;87:1298–300.

    Article  CAS  PubMed  Google Scholar 

  337. Kuratani N, Oi Y. Greater incidence of emergence agitation in children after sevoflurane anesthesia as compared with halothane. A meta-analysis of randomized controlled trials. Anesthesiology. 2008;109:225–32.

    Article  CAS  PubMed  Google Scholar 

  338. Sethi S, Ghai B, Ram J, Wig J. Postoperative emergence delirium in pediatric patients undergoing cataract surgery - a comparison of desflurane and sevoflurane. Pediatr Anesth. 2013;23:1131–7.

    Google Scholar 

  339. Cravero J, Surgenor S, Whalen K. Emergence agitation in paediatric patients after sevoflurane anaesthesia and no surgery: a comparison with halothane. Pediatr Anesth. 2000;10:419–24.

    Article  CAS  Google Scholar 

  340. Sikich N, Lerman J. Development and psychometric evaluation of the Pediatric Anesthesia Emergence Delirium scale. Anesthesiology. 2004;100:1138–45.

    Article  PubMed  Google Scholar 

  341. Lerman J. Emergence delirium and agitation in children. www.uptodate.com. Aug 2020.

  342. Murphy GS. Neuromuscular monitoring in the perioperative period. Anesth Analg. 2018;126:464–8.

    Article  PubMed  Google Scholar 

  343. Rupp SM, Miller RD, Gencarelli PJ. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology. 1984;60:102–5.

    Article  CAS  PubMed  Google Scholar 

  344. Chapple DJ, Clark JS, Hughes R. Interaction between atracurium and drugs used in anaesthesia. Br J Anaesth. 1983;55:17S–22S.

    PubMed  Google Scholar 

  345. Caldwell JE, Laster MJ, Magorian T, et al. The neuromuscular effects of desflurane, alone and combined with pancuronium or succinylcholine in humans. Anesthesiology. 1991;74:412–8.

    Article  CAS  PubMed  Google Scholar 

  346. Kobayashi O, Ohta Y, Kosaka F. Interaction of sevoflurane, isoflurane, enflurane and halothane with non-depolarizing muscle relaxants and their prejunctional effects at the neuromuscular junction. Acta Med Okayama. 1990;44:209–15.

    CAS  PubMed  Google Scholar 

  347. Brandom BW, Cook DR, Woelfel SK, et al. Atracurium infusion requirements in children during halothane, isoflurane, and narcotic anesthesia. Anesth Analg. 1985;64:471–6.

    Article  CAS  PubMed  Google Scholar 

  348. Rapp HJ, Altenmueller CA, Waschke C. Neuromuscular recovery following rocuronium bromide single dose in infants. Pediatr Anesth. 2004;14:329–35.

    Article  Google Scholar 

  349. Lerman J, Parness J. Malignant hyperthermia, Chapter 41. In: Coté CJ, Lerman J, Anderson BJ, editors. A practice of anesthesia for infants and children. 6th ed. Philadelphia, PA: Elsevier; 2019. p. 921.

    Chapter  Google Scholar 

  350. Yamakage M, Takahashi K, Takahashi M, et al. Performance of four carbon dioxide absorbents in experimental and clinical settings. Anaesthesia. 2009;64:287–92.

    Article  CAS  PubMed  Google Scholar 

  351. Fee JPH, Murray JM, Luney SR. Molecular sieves: an alternative method of carbon dioxide removal which does not generate compound A during simulated low-flow sevoflurane anaesthesia. Anaesthesia. 1995;50:841–5.

    Article  CAS  PubMed  Google Scholar 

  352. Renfrew CW, Murray JM, Fee JPH. A new approach to carbon dioxide absorbents. Acta Scand Anaesth. 1998;41(Suppl 12):58–60.

    Google Scholar 

  353. Murray JM, Renfrew CW, Bedi A, et al. Amsorb: a new carbon dioxide absorbent for use in anesthetic breathing systems. Anesthesiology. 1999;91:1342–8.

    Article  CAS  PubMed  Google Scholar 

  354. Versichelen LFM, Bouche MPLA, Rolly G, et al. Only carbon dioxide absorbents free of both NaOH and KOH do not generate compound A during in vitro close-system sevoflurane. Evaluation of five absorbents. Anesthesiology. 2001;95:750–5.

    Article  CAS  PubMed  Google Scholar 

  355. Keijzer C, Perez RSGM, de Lange JJ. Compound A and carbon monoxide production from sevoflurane and seven different types of carbon dioxide absorbent in a patient model. Acta Anaesthesiol Scand. 2007;51:31–7.

    Article  CAS  PubMed  Google Scholar 

  356. Dunning MB III, Bretscher LE, Arain SR, Symkowski Y, Woehlck HJ. Sevoflurane breakdown produces flammable concentrations of hydrogen. Anesthesiology. 2007;106:144–8.

    Article  CAS  PubMed  Google Scholar 

  357. Fang ZX, Eger EI II, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane and sevoflurane by soda lime and Baralyme. Anesth Analg. 1995;80:1187–93.

    CAS  PubMed  Google Scholar 

  358. Frink EJ, Nogami WM, Morgan SE, Salmon RC. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents. Anesthesiology. 1997;87:308–16.

    Article  CAS  PubMed  Google Scholar 

  359. Baxter PJ, Kharasch ED. Rehydration of desiccated baralyme prevents carbon monoxide formation from desflurane in an anesthesia machine. Anesthesiology. 1997;86:1061–5.

    Article  CAS  PubMed  Google Scholar 

  360. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime. Toxicity of the byproducts. Anesthesiology. 1992;77:1155–64.

    Article  CAS  PubMed  Google Scholar 

  361. Ebert TJ, Frink EJ Jr, Kharasch ED. Absence of biochemical evidence for renal and hepatic dysfunction after 8 hours of 1.25 Minimum Alveolar Concentration of sevoflurane anesthesia in volunteers. Anesthesiology. 1998;88:601–10.

    Article  CAS  PubMed  Google Scholar 

  362. Ebert TJ, Messana LD, Uhrich TD, Staacke TS. Absence of renal and hepatic toxicity after four hours of 1.25 minimum alveolar anesthetic concentration sevoflurane anesthesia in volunteers. Anesth Analg. 1998;86:662–7.

    CAS  PubMed  Google Scholar 

  363. Kharasch ED, Frink EJ Jr, Zager R, et al. Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity. Anesthesiology. 1997;86:1238–53.

    Article  CAS  PubMed  Google Scholar 

  364. Eger EI II, Gong D, Koblin DD, et al. Dose-related biochemical markers of renal injury after sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;85:1154–63.

    Article  CAS  PubMed  Google Scholar 

  365. Hideyuki H, Yushi A, Hiroki W, et al. The effects of low-flow sevoflurane and isoflurane anesthesia on renal function in patients with stable moderate renal insufficiency. Anesth Analg. 2001;92:650–5.

    Article  Google Scholar 

  366. Conzen PF, Kharasch ED, Czerner SFA, et al. Low-flow sevoflurane compared with low-flow isoflurane anesthesia in patients with stable renal insufficiency. Anesthesiology. 2002;97:578–84.

    Article  CAS  PubMed  Google Scholar 

  367. Frink EJ, Green WB Jr, Brown EA, et al. Compound A concentrations during sevoflurane anesthesia in children. Anesthesiology. 1996;84:566–71.

    Article  CAS  PubMed  Google Scholar 

  368. Fang ZX, Eger EI II. Factors affecting the concentration of compound A resulting from the degradation of sevoflurane by soda lime and Baralyme® in a standard anesthetic circuit. Anesth Analg. 1995;81:564–8.

    CAS  PubMed  Google Scholar 

  369. Fang ZX, Kandel L, Laster MJ, Ionescu P, Eger EI II. Factors affecting the production of compound A from the interaction of sevoflurane with Baralyme® and Soda Lime. Anesth Analg. 1996;82:775–81.

    CAS  PubMed  Google Scholar 

  370. Gonsowski CT, Laster MJ, Eger EI II, et al. Toxicity of compound A in rats: effect of increasing duration of administration. Anesthesiology. 1994;80:566–73.

    Article  CAS  PubMed  Google Scholar 

  371. Eger EI II, Koblin DD, Bowland T, et al. Nephrotoxicity of sevoflurane versus desflurane anesthesia in volunteers. Anesth Analg. 1997;85:160–8.

    Article  PubMed  Google Scholar 

  372. Iyer RA, Frink EJ, Ebert TJ, Anders MW. Cysteine conjugate β-lyase-dependent metabolism of compound A (2-[fluoromethoxy]-1,1,3,3,3-pentafluoro-1-propene) in human subjects anesthetized with sevoflurane and in rats given compound A. Anesthesiology. 1998;88:611–8.

    Article  CAS  PubMed  Google Scholar 

  373. Kharasch ED, Schroeder JL, Sheffels P, et al. Influence of sevoflurane on the metabolism and renal effects of compound A in rats. Anesthesiology. 2005;103:1183–8.

    Article  CAS  PubMed  Google Scholar 

  374. Kharasch ED, Schroeder JL, Bammler T, et al. Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (“compound A”) in rats. Toxicol Sci. 2006;90:419–31.

    Article  CAS  PubMed  Google Scholar 

  375. Anderson BJ. Paracetamol (Acetaminophen): mechanisms of action. Paed Anaesth. 2008;18:915–21.

    Article  Google Scholar 

  376. Korpela R, Korvenoja P, Meretoja OA. Morphine-sparing effect of acetaminophen in pediatric day-case surgery. Anesthesiology. 1999;91:442–7.

    Article  CAS  PubMed  Google Scholar 

  377. Anderson BJ, Gibb IA. Paracetamol (acetaminophen) pharmacodynamics; interpreting the plasma concentration. Arch Dis Child. 2007;93:241–7.

    PubMed  Google Scholar 

  378. Murat I, Baujard C, Foussat C, et al. Tolerance and analgesic efficacy of a new i.v. paracetamol solution in children after inguinal hernia repair. Paediatr Anaesth. 2005;15:663–70.

    Article  CAS  PubMed  Google Scholar 

  379. Allegaert K, Naulaers G, Vanhaesebrouck S, Anderson BJ. The paracetamol concentration-effect relation in neonates. Paediatr Anaesth. 2013;23:45–50.

    Article  PubMed  Google Scholar 

  380. Lingen van RA, Deinum HT, Quak CM, Okken A, Tibboel D. Multiple-dose pharmacokinetics of rectally administered acetaminophen in term infants. Clin Pharmacol Ther. 1999;66:509–15.

    Article  Google Scholar 

  381. Lingen van RA, Quak CM, Deinum HT, et al. Effects of rectally administered paracetamol on infants delivered by vacuum extraction. Eur J Obstet Gynecol Reprod Biol. 2001;94:73–8.

    Article  Google Scholar 

  382. Howard CR, Howard FM, Weitzman ML. Acetaminophen analgesia in neonatal circumcision: the effect on pain. Pediatrics. 1994;93:641–6.

    Article  CAS  PubMed  Google Scholar 

  383. Shah V, Taddio A, Ohlsson A. Randomised controlled trial of paracetamol for heel prick pain in neonates. Arch Dis Child Fetal Neonatal Ed. 1998;79:F209–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Agrawal S, Fitzsimons JJ, Horn V, Petros A. Intravenous paracetamol for postoperative analgesia in a 4-day-old term neonate. Paediatr Anaesth. 2007;17:70–1.

    Article  PubMed  Google Scholar 

  385. Anderson BJ, Holford NH, Woollard GA, Kanagasundaram S, Mahadevan M. Perioperative pharmacodynamics of acetaminophen analgesia in children. Anesthesiology. 1999;90:411–21.

    Article  CAS  PubMed  Google Scholar 

  386. van Lingen RA, Deinum JT, Quak JM, et al. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1999;80:F59–63.

    Article  PubMed  PubMed Central  Google Scholar 

  387. Miller RP, Roberts RJ, Fischer LJ. Acetaminophen elimination kinetics in neonates, children, and adults. Clin Pharmacol Ther. 1976;19:284–94.

    Article  CAS  PubMed  Google Scholar 

  388. Allegaert K, Palmer GM, Anderson BJ. The pharmacokinetics of intravenous paracetamol in neonates: size matters most. Arch Dis Child. 2011;96:575–80.

    Article  PubMed  Google Scholar 

  389. Allegaert K, Anderson BJ, Naulaers G, et al. Intravenous paracetamol (propacetamol) pharmacokinetics in term and preterm neonates. Eur J Clin Pharmacol. 2004;60:191–7.

    Article  CAS  PubMed  Google Scholar 

  390. Palmer GM, Atkins M, Anderson BJ, et al. I.V. acetaminophen pharmacokinetics in neonates after multiple doses. Br J Anaesth. 2008;101:523–30.

    Article  CAS  PubMed  Google Scholar 

  391. Campbell S, Anderson BJ, McLay M, Engelhardt T. Overdose of intravenous acetaminophen in an ex-premature neonate. J Ped. 2013;3:186–7.

    Google Scholar 

  392. de la Pintiére A, Beuchée A, Bétrémieux PE. Intravenous propacetamonol overdose in a term newborn. Arch Dis Child Fetal Neonatal Ed. 2003;88:F351–2.

    PubMed  PubMed Central  Google Scholar 

  393. Nevin DG, Shung J. Intravenous paracetamol overdose in a preterm infant during anesthesia. Pediatr Anesth. 2009;20:105–7.

    Article  Google Scholar 

  394. Bartocci M, Lundeberg S. Intravenous paracetamol: the ‘Stockholm protocol’ for postoperative analgesia of term and preterm neonates. Paediatr Anaesth. 2007;17:1120–1.

    Article  PubMed  Google Scholar 

  395. Allegaert K, Murat I, Anderson BJ. Not all intravenous paracetamol formulations are created equal. Paediatr Anaesth. 2007;17:811–2.

    Article  PubMed  Google Scholar 

  396. Wilson-Smith EM, Morton NS. Survey of i.v. paracetamol (acetaminophen) use in neonates and infants under 1 year of age by UK anesthetists. Paediatr Anaesth. 2009;19:329–37.

    Article  PubMed  Google Scholar 

  397. Anderson BJ, Allegaert K. Intravenous neonatal paracetamol dosing: the magic of 10 days. Paediatr Anaesth. 2009;19:289–95.

    Article  PubMed  Google Scholar 

  398. Veyckemans F, Anderson BJ, Wolf AR, Allegaert K. Intravenous paracetamol dosage in the neonate and small infant. Br J Anaesth. 2014;112:380–1.

    Article  CAS  PubMed  Google Scholar 

  399. Allegaert K, Rayyan M, De Rijdt T, Van Beek F, Naulaers G. Hepatic tolerance of repeated intravenous paracetamol administration in neonates. Paediatr Anaesth. 2008;18:388–92.

    Article  PubMed  Google Scholar 

  400. Shaffer CL, Gal P, Ransom JL, et al. Effect of age and birth weight on indomethacin pharmacodynamics in neonates treated for patent ductus arteriosus. Crit Care Med. 2002;30:343–8.

    Article  CAS  PubMed  Google Scholar 

  401. Anderson BJ, Hannam JA. Considerations when using pharmacokinetic/pharmacodynamic modeling to determine the effectiveness of simple analgesics in children. Expert Opin Drug Metab Toxicol. 2015;11:1393–408.

    Article  CAS  PubMed  Google Scholar 

  402. Mannila A, Kumpulainen E, Lehtonen M, et al. Plasma and cerebrospinal fluid concentrations of indomethacin in children after intravenous administration. J Clin Pharmacol. 2007;47:94–100.

    Article  CAS  PubMed  Google Scholar 

  403. Kokki H, Kumpulainen E, Laisalmi M, Savolainen J, Rautio J, Lehtonen M. Diclofenac readily penetrates the cerebrospinal fluid in children. Br J Clin Pharmacol. 2008;65:879–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. Kumpulainen E, Kokki H, Laisalmi M, et al. How readily does ketorolac penetrate cerebrospinal fluid in children? J Clin Pharmacol. 2008;48:495–501.

    Article  CAS  PubMed  Google Scholar 

  405. Kokki H, Kumpulainen E, Lehtonen M, et al. Cerebrospinal fluid distribution of ibuprofen after intravenous administration in children. Pediatrics. 2007;120:e1002–8.

    Article  PubMed  Google Scholar 

  406. Aranda JV, Varvarigou A, Beharry K, et al. Pharmacokinetics and protein binding of intravenous ibuprofen in the premature newborn infant. Acta Paediatr. 1997;86:289–93.

    Article  CAS  PubMed  Google Scholar 

  407. Van Overmeire B, Touw D, Schepens PJ, Kearns GL, van den Anker JN. Ibuprofen pharmacokinetics in preterm infants with patent ductus arteriosus. Clin Pharmacol Ther. 2001;70:336–43.

    Article  PubMed  Google Scholar 

  408. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–21.

    Article  CAS  PubMed  Google Scholar 

  409. Hamman MA, Thompson GA, Hall SD. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol. 1997;54:33–41.

    Article  CAS  PubMed  Google Scholar 

  410. Tanaka E. Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther. 1998;23:403–16.

    Article  CAS  PubMed  Google Scholar 

  411. Scott CS, Retsch-Bogart GZ, Kustra RP, Graham KM, Glasscock BJ, Smith PC. The pharmacokinetics of ibuprofen suspension, chewable tablets, and tablets in children with cystic fibrosis. J Pediatr. 1999;134:58–63.

    Article  CAS  PubMed  Google Scholar 

  412. Wiest DB, Pinson JB, Gal PS, et al. Population pharmacokinetics of intravenous indomethacin in neonates with symptomatic patent ductus arteriosus. Clin Pharmacol Ther. 1991;49:550–7.

    Article  CAS  PubMed  Google Scholar 

  413. Smyth JM, Collier PS, Darwish M, et al. Intravenous indometacin in preterm infants with symptomatic patent ductus arteriosus. A population pharmacokinetic study. Br J Clin Pharmacol. 2004;58:249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Olkkola KT, Maunuksela EL, Korpela R. Pharmacokinetics of postoperative intravenous indomethacin in children. Pharmacol Toxicol. 1989;65:157–60.

    Article  CAS  PubMed  Google Scholar 

  415. Lynn AM, Bradford H, Kantor ED, et al. Postoperative ketorolac tromethamine use in infants aged 6-18 months: the effect on morphine usage, safety assessment, and stereo-specific pharmacokinetics. Anesth Analg. 2007;104:1040–51.

    Article  CAS  PubMed  Google Scholar 

  416. Gregoire N, Gualano V, Geneteau A, et al. Population pharmacokinetics of ibuprofen enantiomers in very premature neonates. J Clin Pharmacol. 2004;44:1114–24.

    Article  CAS  PubMed  Google Scholar 

  417. Brocks DR, Jamali F. Clinical pharmacokinetics of ketorolac tromethamine. Clin Pharmacokinet. 1992;23:415–27.

    Article  CAS  PubMed  Google Scholar 

  418. Mandema JW, Stanski DR. Population pharmacodynamic model for ketorolac analgesia. Clin Pharmacol Ther. 1996;60:619–35.

    Article  CAS  PubMed  Google Scholar 

  419. Papacci P, De Francisci G, Iacobucci T, et al. Use of intravenous ketorolac in the neonate and premature babies. Paediatr Anaesth. 2004;14:487–92.

    Article  PubMed  Google Scholar 

  420. Strom BL, Berlin JA, Kinman JL, et al. Parenteral ketorolac and risk of gastrointestinal and operative site bleeding. A postmarketing surveillance study. JAMA. 1996;275:376–82.

    Article  CAS  PubMed  Google Scholar 

  421. Gupta A, Daggett C, Drant S, Rivero N, Lewis A. Prospective randomized trial of ketorolac after congenital heart surgery. J Cardiothorac Vasc Anesth. 2004;18:454–7.

    Article  CAS  PubMed  Google Scholar 

  422. Hannam J, Anderson BJ. Explaining the acetaminophen-ibuprofen analgesic interaction using a response surface model. Paediatr Anaesth. 2011;21:1234–40.

    Article  PubMed  Google Scholar 

  423. Hannam JA, Anderson BJ, Mahadevan M, Holford NH. Postoperative analgesia using diclofenac and acetaminophen in children. Paediatr Anaesth. 2014;24:953–61.

    Article  PubMed  Google Scholar 

  424. Naulaers G, Delanghe G, Allegaert K, et al. Ibuprofen and cerebral oxygenation and circulation. Arch Dis Child Fetal Neonatal Ed. 2005;90:F75–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Lesko SM, Mitchell AA. An assessment of the safety of pediatric ibuprofen. A practitioner-based randomized clinical trial. JAMA. 1995;273:929–33.

    Article  CAS  PubMed  Google Scholar 

  426. Lesko SM, Mitchell AA. The safety of acetaminophen and ibuprofen among children younger than two years old. Pediatrics. 1999;104:e39.

    Article  CAS  PubMed  Google Scholar 

  427. Keenan GF, Giannini EH, Athreya BH. Clinically significant gastropathy associated with nonsteroidal antiinflammatory drug use in children with juvenile rheumatoid arthritis. J Rheumatol. 1995;22:1149–51.

    CAS  PubMed  Google Scholar 

  428. Dowd JE, Cimaz R, Fink CW. Nonsteroidal antiinflammatory drug-induced gastroduodenal injury in children. Arthritis Rheum. 1995;38:1225–31.

    Article  CAS  PubMed  Google Scholar 

  429. Ment LR, Vohr BR, Makuch RW, et al. Prevention of intraventricular hemorrhage by indomethacin in male preterm infants. J Pediatr. 2004;145:832–4.

    Article  CAS  PubMed  Google Scholar 

  430. Paul D, Bodnar RJ, Gistrak MA, Pasternak GW. Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice. Eur J Pharmacol. 1989;168:307–14.

    Article  CAS  PubMed  Google Scholar 

  431. Bouwmeester NJ, Anand KJ, van Dijk M, Hop WC, Boomsma F, Tibboel D. Hormonal and metabolic stress responses after major surgery in children aged 0-3 years: a double-blind, randomized trial comparing the effects of continuous versus intermittent morphine. Br J Anaesth. 2001;87:390–9.

    Article  CAS  PubMed  Google Scholar 

  432. Chay PC, Duffy BJ, Walker JS. Pharmacokinetic-pharmacodynamic relationships of morphine in neonates. Clin Pharmacol Ther. 1992;51:334–42.

    Article  CAS  PubMed  Google Scholar 

  433. Anderson BJ, Persson M, Anderson M. Rationalising intravenous morphine prescriptions in children. Acute Pain. 1999;2:59–67.

    Article  Google Scholar 

  434. Anderson BJ, van den Anker J. Why is there no morphine concentration-response curve for acute pain? Paediatr Anaesth. 2014;24:233–8.

    Article  PubMed  Google Scholar 

  435. Inturrisi CE, Colburn WA. Application of pharmacokinetic-pharmacodynamic modeling to analgesia. In: Foley KM, Inturrisi CE, editors. Advances in pain research and therapy opioid analgesics in the management of clinical pain. New York: Raven Press; 1986. p. 441–52.

    Google Scholar 

  436. van Lingen RA, Simons SH, Anderson BJ, Tibboel D. The effects of analgesia in the vulnerable infant during the perinatal period. Clin Perinatol. 2002;29:511–34.

    Article  PubMed  Google Scholar 

  437. Wittwer E, Kern SE. Role of morphine's metabolites in analgesia: concepts and controversies. Aaps J. 2006;8:E348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  438. Gong QL, Hedner J, Bjorkman R, Hedner T. Morphine-3-glucuronide may functionally antagonize morphine-6-glucuronide induced antinociception and ventilatory depression in the rat. Pain. 1992;48:249–55.

    Article  CAS  Google Scholar 

  439. Lundeberg S, Beck O, Olsson GL, Boreus LO. Rectal administration of morphine in children. Pharmacokinetic evaluation after a single-dose. Acta Anaesthesiol Scand. 1996;40:445–51.

    Article  CAS  PubMed  Google Scholar 

  440. Gourlay GK, Boas RA. Fatal outcome with use of rectal morphine for postoperative pain control in an infant. BMJ. 1992;304:766–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Mayhew JF, Brodsky RC, Blakey D, Petersen W. Low-dose caudal morphine for postoperative analgesia in infants and children: a report of 500 cases. J Clin Anesth. 1995;7:640–2.

    Article  CAS  PubMed  Google Scholar 

  442. Haberkern CM, Lynn AM, Geiduschek JM, et al. Epidural and intravenous bolus morphine for postoperative analgesia in infants. Can J Anaesth. 1996;43:1203–10.

    Article  CAS  PubMed  Google Scholar 

  443. Nichols DJ, Yaster M, Lynn AM, al e. Disposition and respiratory effects of intrathecal morphine in children. Anesthesiology. 1993;79:733–8.

    Article  CAS  PubMed  Google Scholar 

  444. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: Part 2—Clinical use. Paediatr Anaesth. 1997;7:93–101.

    Article  CAS  PubMed  Google Scholar 

  445. Kart T, Christrup LL, Rasmussen M. Recommended use of morphine in neonates, infants and children based on a literature review: Part 1—Pharmacokinetics. Paediatr Anaesth. 1997;7:5–11.

    Article  CAS  PubMed  Google Scholar 

  446. Anderson BJ, Ralph CJ, Stewart AW, Barber C, Holford NH. The dose-effect relationship for morphine and vomiting after day-stay tonsillectomy in children. Anaesth Intensive Care. 2000;28:155–60.

    Article  CAS  PubMed  Google Scholar 

  447. Weinstein MS, Nicolson SC, Schreiner MS. A single dose of morphine sulfate increases the incidence of vomiting after outpatient inguinal surgery in children. Anesthesiology. 1994;81:572–7.

    Article  CAS  PubMed  Google Scholar 

  448. Suresh S, Anand KJS. Opioid tolerance in neonates: a state of the art review. Paediatr Anaesth. 2001;11:511–21.

    Article  CAS  PubMed  Google Scholar 

  449. Chana SK, Anand KJ. Can we use methadone for analgesia in neonates? Arch Dis Child Fetal Neonatal Ed. 2001;85:F79–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther. 1987;240:159–66.

    CAS  PubMed  Google Scholar 

  451. Wynands JE, Townsend GE, Wong P, Whalley DG, Srikant CB, Patel YC. Blood pressure response and plasma fentanyl concentrations during high- and very high-dose fentanyl anesthesia for coronary artery surgery. Anesth Analg. 1983;62:661–5.

    Article  CAS  PubMed  Google Scholar 

  452. Anand KJ, Sippell WG, Aynsley-Green A. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet. 1987;1:62–6.

    Article  CAS  PubMed  Google Scholar 

  453. Guinsburg R, Kopelman BI, Anand KJ, de Almeida MF, Peres Cde A, Miyoshi MH. Physiological, hormonal, and behavioral responses to a single fentanyl dose in intubated and ventilated preterm neonates. J Pediatr. 1998;132:954–9.

    Article  CAS  PubMed  Google Scholar 

  454. Hertzka RE, Gauntlett IS, Fisher DM, Spellman MJ. Fentanyl-induced ventilatory depression: effects of age. Anesthesiology. 1989;70:213–8.

    Article  CAS  PubMed  Google Scholar 

  455. Saarenmaa E, Neuvonen PJ, Fellman V. Gestational age and birth weight effects on plasma clearance of fentanyl in newborn infants. J Pediatr. 2000;136:767–70.

    Article  CAS  PubMed  Google Scholar 

  456. Barrier G, Attia J, Mayer MN, Amiel-Tison C, Shnider SM. Measurement of post-operative pain and narcotic administration in infants using a new clinical scoring system. Intensive Care Med. 1989;15:S37–9.

    PubMed  Google Scholar 

  457. Billmire DA, Neale HW, Gregory RO. Use of i.v. fentanyl in the outpatient treatment of pediatric facial trauma. J Trauma. 1985;25:1079–80.

    CAS  PubMed  Google Scholar 

  458. Koren G, Goresky G, Crean P, Klein J, MacLeod SM. Pediatric fentanyl dosing based on pharmacokinetics during cardiac surgery. Anesth Analg. 1984;63:577–82.

    Article  CAS  PubMed  Google Scholar 

  459. Koren G, Goresky G, Crean P, Klein J, MacLeod SM. Unexpected alterations in fentanyl pharmacokinetics in children undergoing cardiac surgery: age related or disease related? Dev Pharmacol Ther. 1986;9:183–91.

    Article  CAS  PubMed  Google Scholar 

  460. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology. 1992;76:334–41.

    Article  CAS  PubMed  Google Scholar 

  461. Ginsberg B, Howell S, Glass PS, et al. Pharmacokinetic model-driven infusion of fentanyl in children. Anesthesiology. 1996;85:1268–75.

    Article  CAS  PubMed  Google Scholar 

  462. Zernikow B, Michel E, Anderson BJ. Transdermal fentanyl in childhood and adolescence: a comprehensive literature review. J Pain. 2007;8:187–207.

    Article  CAS  PubMed  Google Scholar 

  463. Harlos MS, Stenekes S, Lambert D, Hohl C, Chochinvo HM. Intranasal fentanyl in the palliative care of newborns and infants. J Pain Symptom Manage. 2013;46:265–74.

    Article  PubMed  Google Scholar 

  464. Lerman J, Nolan J, Eyres R, et al. Efficacy, safety, and pharmacokinetics of levobupivacaine with and without fentanyl after continuous epidural infusion in children: a multicenter trial. Anesthesiology. 2003;99:1166–74.

    Article  CAS  PubMed  Google Scholar 

  465. Goodarzi M. Comparison of epidural morphine, hydromorphone and fentanyl for postoperative pain control in children undergoing orthopaedic surgery. Paediatr Anaesth. 1999;9:419–22.

    Article  CAS  PubMed  Google Scholar 

  466. Ganesh A, Adzick NS, Foster T, Cucchiaro G. Efficacy of addition of fentanyl to epidural bupivacaine on postoperative analgesia after thoracotomy for lung resection in infants. Anesthesiology. 2008;109:890–4.

    Article  CAS  PubMed  Google Scholar 

  467. Franck LS, Vilardi J, Durand D, Powers R. Opioid withdrawal in neonates after continuous infusions of morphine or fentanyl during extracorporeal membrane oxygenation. Am J Crit Care. 1998;7:364–9.

    Article  CAS  PubMed  Google Scholar 

  468. Muller P, Vogtmann C. Three cases with different presentation of fentanyl-induced muscle rigidity—a rare problem in intensive care of neonates. Am J Perinatol. 2000;17:23–6.

    Article  CAS  PubMed  Google Scholar 

  469. Fahnenstich H, Steffan J, Kau N, Bartmann P. Fentanyl-induced chest wall rigidity and laryngospasm in preterm and term infants. Crit Care Med. 2000;28:836–9.

    Article  CAS  PubMed  Google Scholar 

  470. Reich A, Beland B, van Aken H. Intravenous Narcotics and Analgesic Agents. In: Bissonnette B, Dalens BJ, editors. Pediatric Anesthesia. New York: McGraw-Hill; 2002. p. 259–77.

    Google Scholar 

  471. Patel SS, Spencer CM. Remifentanil. Drugs. 1996;52:417–27.

    Article  CAS  PubMed  Google Scholar 

  472. Duthie DJ. Remifentanil and tramadol. Br J Anaesth. 1998;81:51–7.

    Article  CAS  PubMed  Google Scholar 

  473. Davis PJ, Galinkin J, McGowan FX, et al. A randomized multicenter study of remifentanil compared with halothane in neonates and infants undergoing pyloromyotomy. I. Emergence and recovery profiles. Anesth Analg. 2001;93:1380–6.

    Article  CAS  PubMed  Google Scholar 

  474. Chiaretti A, Pietrini D, Piastra M, et al. Safety and efficacy of remifentanil in craniosynostosis repair in children less than 1 year old. Pediatr Neurosurg. 2000;33:83–8.

    Article  CAS  PubMed  Google Scholar 

  475. Mani V, Morton NS. Overview of total intravenous anesthesia in children. Paediatr Anaesth. 2009;

    Google Scholar 

  476. Zhao M, Joo DT. Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology. 2008;109:308–17.

    Article  CAS  PubMed  Google Scholar 

  477. Egan TD. Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet. 1995;29:80–94.

    Article  CAS  PubMed  Google Scholar 

  478. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology. 1996;84:812–20.

    Article  CAS  PubMed  Google Scholar 

  479. Rigby-Jones AE, Priston MJ, Sneyd JR, et al. Remifentanil-midazolam sedation for paediatric patients receiving mechanical ventilation after cardiac surgery. Br J Anaesth. 2007;99:252–61.

    Article  CAS  PubMed  Google Scholar 

  480. Davis PJ, Wilson AS, Siewers RD, Pigula FA, Landsman IS. The effects of cardiopulmonary bypass on remifentanil kinetics in children undergoing atrial septal defect repair. Anesth Analg. 1999;89:904–8.

    Article  CAS  PubMed  Google Scholar 

  481. Sam WJ, Hammer GB, Drover DR. Population pharmacokinetics of remifentanil in infants and children undergoing cardiac surgery. BMC Anesthesiol. 2009;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  482. Michelsen LG, Holford NH, Lu W, Hoke JF, Hug CC, Bailey JM. The pharmacokinetics of remifentanil in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg. 2001;93:1100–5.

    Article  CAS  PubMed  Google Scholar 

  483. Barker N, Lim J, Amari E, Malherbe S, Ansermino JM. Relationship between age and spontaneous ventilation during intravenous anesthesia in children. Paediatr Anaesth. 2007;17:948–55.

    Article  PubMed  Google Scholar 

  484. Litman RS. Conscious sedation with remifentanil during painful medical procedures. J Pain Symptom Manage. 2000;19:468–71.

    Article  CAS  PubMed  Google Scholar 

  485. Choong K, AlFaleh K, Doucette J, et al. Remifentanil for endotracheal intubation in neonates: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2010;95:F80–4.

    Article  CAS  PubMed  Google Scholar 

  486. Badlee Z, Vakilliamini M, Mohammadizadeh M. Remifentanil for endotracheal intubation in premature infants: a ramdonzed controlled trial. J Res Pharm Pract. 2013;2:75–82.

    Article  Google Scholar 

  487. Penido MG, Garra R, Sammartino M, Silva YP. Remifentanil in neonatal intensive care and anaesthesia practice. Acta Paediatr. 2010;99:1454–63.

    Article  CAS  PubMed  Google Scholar 

  488. Standing JF, Hammer GB, Sam WJ, Drover DR. Pharmacokinetic-pharmacodynamic modeling of the hypotensive effect of remifentanil in infants undergoing cranioplasty. Paediatr Anaesth. 2010;20:7–18.

    Article  PubMed  Google Scholar 

  489. Anderson BJ, Holford NH. Leaving no stone unturned, or extracting blood from stone? Paediatr Anaesth. 2010;20:1–6.

    Article  PubMed  Google Scholar 

  490. Thompson JP, Rowbotham DJ. Remifentanil—an opioid for the 21st century. Br J Anaesth. 1996;76:341–3.

    Article  CAS  PubMed  Google Scholar 

  491. Olkkola KT, Hamunen K. Pharmacokinetics and pharmacodynamics of analgesic drugs. In: Anand KJ, Stevens B, McGrath P, editors. Pain in neonates 2nd revised and enlarged edition. Amsterdam: Elsevier; 2000. p. 135–58.

    Google Scholar 

  492. Saarenmaa E, Huttunen P, Leppaluoto J, Fellman V. Alfentanil as procedural pain relief in newborn infants. Arch Dis Child Fetal Neonatal Ed. 1996;75:F103–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  493. Pokela ML. Effect of opioid-induced analgesia on beta-endorphin, cortisol and glucose responses in neonates with cardiorespiratory problems. Biol Neonate. 1993;64:360–7.

    Article  CAS  PubMed  Google Scholar 

  494. Pokela ML, Koivisto M. Physiological changes, plasma beta-endorphin and cortisol responses to tracheal intubation in neonates. Acta Paediatr. 1994;83:151–6.

    Article  CAS  PubMed  Google Scholar 

  495. Davis PJ, Cook DR. Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clin Pharmacokinet. 1986;11:18–35.

    Article  CAS  PubMed  Google Scholar 

  496. Meuldermans W, Woestenborghs R, Noorduin H, Camu F, van Steenberge A, Heykants J. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol. 1986;30:217–9.

    Article  CAS  PubMed  Google Scholar 

  497. Wilson AS, Stiller RL, Davis PJ, et al. Fentanyl and alfentanil plasma protein binding in preterm and term neonates. Anesth Analg. 1997;84:315–8.

    Article  CAS  PubMed  Google Scholar 

  498. Meistelman C, Saint-Maurice C, Lepaul M, Levron JC, Loose JP, Mac GK. A comparison of alfentanil pharmacokinetics in children and adults. Anesthesiology. 1987;66:13–6.

    Article  CAS  PubMed  Google Scholar 

  499. Anderson BJ, Meakin GH. Scaling for size: some implications for paediatric anaesthesia dosing. Paediatr Anaesth. 2002;12:205–19.

    Article  PubMed  Google Scholar 

  500. Marlow N, Weindling AM, Van Peer A, Heykants J. Alfentanil pharmacokinetics in preterm infants. Arch Dis Child. 1990;65:349–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Killian A, Davis PJ, Stiller RL, Cicco R, Cook DR, Guthrie RD. Influence of gestational age on pharmacokinetics of alfentanil in neonates. Dev Pharmacol Ther. 1990;15:82–5.

    Article  CAS  PubMed  Google Scholar 

  502. Pokela ML, Olkkola KT, Koivisto M, Ryhanen P. Pharmacokinetics and pharmacodynamics of intravenous meperidine in neonates and infants. Clin Pharmacol Ther. 1992;52:342–9.

    Article  CAS  PubMed  Google Scholar 

  503. Hilberman M, Hyer D. Potency of sufentanil. Anesthesiology. 1986;64:665–8.

    Article  CAS  PubMed  Google Scholar 

  504. Greeley WJ, de Bruijn NP, Davis DP. Sufentanil pharmacokinetics in pediatric cardiovascular patients. Anesth Analg. 1987;66:1067–72.

    Article  CAS  PubMed  Google Scholar 

  505. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg. 1996;82:167–72.

    CAS  PubMed  Google Scholar 

  506. Davis PJ, Cook DR, Stiller RL, Davin-Robinson KA. Pharmacodynamics and pharmacokinetics of high-dose sufentanil in infants and children undergoing cardiac surgery. Anesth Analg. 1987;66:203–8.

    Article  CAS  PubMed  Google Scholar 

  507. Greeley WJ, de Bruijn NP. Changes in sufentanil pharmacokinetics within the neonatal period. Anesth Analg. 1988;67:86–90.

    Article  CAS  PubMed  Google Scholar 

  508. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver—evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247:625–34.

    Article  CAS  PubMed  Google Scholar 

  509. Guay J, Gaudreault P, Tang A, Goulet B, Varin F. Pharmacokinetics of sufentanil in normal children. Can J Anaesth. 1992;39:14–20.

    Article  CAS  PubMed  Google Scholar 

  510. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical consequence. Clin Pharm Ther. 2002;71:115–21.

    Article  CAS  Google Scholar 

  511. Cho JE, Kim JY, Kim JE, Chun DH, Jun NH, Kil HK. Epidural sufentanil provides better analgesia from 24 h after surgery compared with epidural fentanyl in children. Acta Anaesthesiol Scand. 2008;52:1360–3.

    Article  CAS  PubMed  Google Scholar 

  512. Bichel T, Rouge JC, Schlegel S, Spahr-Schopfer I, Kalangos A. Epidural sufentanil during paediatric cardiac surgery: effects on metabolic response and postoperative outcome. Paediatr Anaesth. 2000;10:609–17.

    Article  CAS  PubMed  Google Scholar 

  513. Benlabed M, Ecoffey C, Levron JC, Flaisler B, Gross JB. Analgesia and ventilatory response to CO2 following epidural sufentanil in children. Anesthesiology. 1987;67:948–51.

    Article  CAS  PubMed  Google Scholar 

  514. Helmers JH, Noorduin H, Van Peer A, Van Leeuwen L, Zuurmond WW. Comparison of intravenous and intranasal sufentanil absorption and sedation. Can J Anaesth. 1989;36:494–7.

    Article  CAS  PubMed  Google Scholar 

  515. Henderson JM, Brodsky DA, Fisher DM, Brett CM, Hertzka RE. Pre-induction of anesthesia in pediatric patients with nasally administered sufentanil. Anesthesiology. 1988;68:671–5.

    Article  CAS  PubMed  Google Scholar 

  516. Roelofse JA, Shipton EA, de la Harpe CJ, Blignaut RJ. Intranasal sufentanil/midazolam versus ketamine/midazolam for analgesia/sedation in the pediatric population prior to undergoing multiple dental extractions under general anesthesia: a prospective, double-blind, randomized comparison. Anesth Prog. 2004;51:114–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  517. Williams DG, Hatch DJ, Howard RF. Codeine phosphate in paediatric medicine. Br J Anaesth. 2001;86:413–21.

    Article  CAS  PubMed  Google Scholar 

  518. Tremlett M, Anderson BJ, Wolf A. Pro-con debate: is codeine a drug that still has a useful role in pediatric practice? Paediatr Anaesth. 2010;20:183–94.

    Article  PubMed  Google Scholar 

  519. Chen ZR, Somogyi AA, Bochner F. Polymorphic O-demethylation of codeine. Lancet. 1988;2:914–5.

    Article  CAS  PubMed  Google Scholar 

  520. Sindrup SH, Brosen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics. 1995;5:335–46.

    Article  CAS  PubMed  Google Scholar 

  521. Williams DG, Patel A, Howard RF. Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth. 2002;89:839–45.

    Article  CAS  PubMed  Google Scholar 

  522. Eckhardt K, Li S, Ammon S, Schanzle G, Mikus G, Eichelbaum M. Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain. 1998;76:27–33.

    Article  CAS  PubMed  Google Scholar 

  523. Parke TJ, Nandi PR, Bird KJ, Jewkes DA. Profound hypotension following intravenous codeine phosphate. Three case reports and some recommendations. Anaesthesia. 1992;47:852–4.

    Article  CAS  PubMed  Google Scholar 

  524. McEwan A, Sigston PE, Andrews KA, et al. A comparison of rectal and intramuscular codeine phosphate in children following neurosurgery. Paediatr Anaesth. 2000;10:189–93.

    Article  CAS  PubMed  Google Scholar 

  525. Tobias JD, Lowe S, Hersey S, Rasmussen GE, Werkhaven J. Analgesia after bilateral myringotomy and placement of pressure equalization tubes in children: acetaminophen versus acetaminophen with codeine. Anesth Analg. 1995;81:496–500.

    CAS  PubMed  Google Scholar 

  526. St Charles CS, Matt BH, Hamilton MM, Katz BP. A comparison of ibuprofen versus acetaminophen with codeine in the young tonsillectomy patient. Otolaryngol Head Neck Surg. 1997;117:76–82.

    Article  CAS  PubMed  Google Scholar 

  527. Cunliffe M. Codeine phosphate in children: time for re-evaluation? Br J Anaesth. 2001;86:329–31.

    Article  CAS  PubMed  Google Scholar 

  528. Anderson BJ. Is it farewell to codeine? Arch Dis Child. 2013;98:986–8.

    Article  PubMed  Google Scholar 

  529. Kelly LE, Rieder M, van den Anker J, et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics. 2012;129:e1343–7.

    Article  PubMed  Google Scholar 

  530. Tobias JD, Green TP, Cote CJ, Section On A, Pain M, Committee OD. Codeine: time to say "No". Pediatrics. 2016;138

    Google Scholar 

  531. Quiding H, Olsson GL, Boreus LO, Bondesson U. Infants and young children metabolise codeine to morphine. A study after single and repeated rectal administration. Brit. J Clin Pharmacol. 1992;33:45–9.

    Article  CAS  Google Scholar 

  532. Magnani B, Evans R. Codeine intoxication in the neonate. Pediatrics. 1999;104:e75.

    Article  CAS  PubMed  Google Scholar 

  533. Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G. Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med. 2009;361:827–8.

    Article  CAS  PubMed  Google Scholar 

  534. Madadi P, Shirazi F, Walter FG, Koren G. Establishing causality of CNS depression in breastfed infants following maternal codeine use. Paediatr Drugs. 2008;10:399–404.

    Article  PubMed  Google Scholar 

  535. Poulsen L, Brosen K, Arendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH. Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects. Eur J Clin Pharmacol. 1996;51:289–95.

    Article  CAS  PubMed  Google Scholar 

  536. Koren G, Maurice L. Pediatric uses of opioids. Pediatr Clin North Am. 1989;36:1141–56.

    Article  CAS  PubMed  Google Scholar 

  537. Jaffe JH, Martine WR. Opioid analgesics and antagonists. In: Goodman Gilman A, Rall TW, Nies AS, Taylor P, editors. The pharmacological basis of therapeutics. New York: Pergamon Press; 1990. p. 485–531.

    Google Scholar 

  538. Hamunen K, Maunuksela EL, Seppala T, Olkkola KT. Pharmacokinetics of i.v. and rectal pethidine in children undergoing ophthalmic surgery. Br J Anaesth. 1993;71:823–6.

    Article  CAS  PubMed  Google Scholar 

  539. Caldwell J, Wakile LA, Notarianni LJ, et al. Maternal and neonatal disposition of pethidine in childbirth—a study using quantitative gas chromatography-mass spectrometry. Life Sci. 1978;22:589–96.

    Article  CAS  PubMed  Google Scholar 

  540. Latta KS, Ginsberg B, Barkin RL. Meperidine: a critical review. Am J Ther. 2002;9:53–68.

    Article  PubMed  Google Scholar 

  541. Vetter TR. Pediatric patient-controlled analgesia with morphine versus meperidine. J Pain Symptom Manage. 1992;7:204–8.

    Article  CAS  PubMed  Google Scholar 

  542. Berde CB, Sethna NF. Analgesics for the treatment of pain in children. N Engl J Med. 2002;347:1094–103.

    Article  CAS  PubMed  Google Scholar 

  543. Coté CJ, Karl HW, Notterman DA, Weinberg JA, McCloskey C. Adverse sedation events in pediatrics: analysis of medications used for sedation. Pediatrics. 2000;106:633–44.

    Article  PubMed  Google Scholar 

  544. Ngan Kee WD. Intrathecal pethidine: pharmacology and clinical applications. Anaesth Intens Care. 1998;26:137–46.

    Article  CAS  Google Scholar 

  545. Sabatowski R, Kasper SM, Radbruch L. Patient-controlled analgesia with intravenous L-methadone in a child with cancer pain refractory to high-dose morphine. J Pain Symptom Manage. 2002;23:3–5.

    Article  PubMed  Google Scholar 

  546. Suresh S, Anand KJ. Opioid tolerance in neonates: mechanisms, diagnosis, assessment, and management. Semin Perinatol. 1998;22:425–33.

    Article  CAS  PubMed  Google Scholar 

  547. Tobias JD. Tolerance, withdrawal, and physical dependency after long-term sedation and analgesia of children in the pediatric intensive care unit. Crit Care Med. 2000;28:2122–32.

    Article  CAS  PubMed  Google Scholar 

  548. Tolia VN, Murthy K, Bennett MM, et al. Morphine vs methadone treatment for infants with neonatal abstinence syndrome. J Pediatr. 2018;203:185–9.

    Article  CAS  PubMed  Google Scholar 

  549. Slowiczek L, Hein DJ, Risoldi Cochrane Z, Gregory PJ. Morphine and methadone for neonatal abstinence syndrome: a systematic review. Neonatal Netw. 2018;37:365–71.

    Article  PubMed  Google Scholar 

  550. Berde CB, Beyer JE, Bournaki MC, Levin CR, Sethna NF. Comparison of morphine and methadone for prevention of postoperative pain in 3- to 7-year-old children. J Pediatr. 1991;119:136–41.

    Article  CAS  PubMed  Google Scholar 

  551. Shir Y, Shenkman Z, Shavelson V, Davidson EM, Rosen G. Oral methadone for the treatment of severe pain in hospitalized children: a report of five cases. Clin J Pain. 1998;14:350–3.

    Article  CAS  PubMed  Google Scholar 

  552. Davies D, DeVlaming D, Haines C. Methadone analgesia for children with advanced cancer. Pediatr Blood Cancer. 2008;51:393–7.

    Article  PubMed  Google Scholar 

  553. Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet. 1976;1:219–30.

    Article  CAS  PubMed  Google Scholar 

  554. Kaufmann JJ, Koski WS, Benson DN, Semo NM. Narcotic and narcotic antagonist pKa's and partition coefficients and their significance in clinical practice. Drug Alcohol Depend. 1975;1:103–14.

    Article  CAS  PubMed  Google Scholar 

  555. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology. 1982;57:458–67.

    Article  CAS  PubMed  Google Scholar 

  556. Horst J, Frei-Jones M, Deych E, et al. Pharmacokinetics and analgesic effects of methadone in children and adults with sickle cell disease. Pediatr Blood Cancer. 2016;63:2123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  557. van Donge T, Samiee-Zararghandy S, Pfister M, et al. Methadone dosing strategies in preterm neonates can be simplified. Br J Clin Pharmacol. 2019;85:1348–56.

    Article  PubMed  PubMed Central  Google Scholar 

  558. Stemland CJ, Witte J, Colquhoun DA, et al. The pharmacokinetics of methadone in adolescents undergoing posterior spinal fusion. Paediatr Anaesth. 2013;23:51–7.

    Article  PubMed  Google Scholar 

  559. Foster DJ, Somogyi AA, White JM, Bochner F. Population pharmacokinetics of (R)-, (S)- and rac-methadone in methadone maintenance patients. Br J Clin Pharmacol. 2004;57:742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  560. Richards-Waugh LL, Primerano DA, Dementieva Y, Kraner JC, Rankin GO. Fatal methadone toxicity: potential role of CYP3A4 genetic polymorphism. J Anal Toxicol. 2014;38:541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  561. Mandema JW, Tuk B, van Steveninck AL, Breimer DD, Cohen AF, Danhof M. Pharmacokinetic-pharmacodynamic modeling of the central nervous system effects of midazolam and its main metabolite alpha-hydroxymidazolam in healthy volunteers. Clin Pharmacol Ther. 1992;51:715–28.

    Article  CAS  PubMed  Google Scholar 

  562. Greenblatt DJ, Ehrenberg BL, Gunderman J, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther. 1989;45:356–65.

    Article  CAS  PubMed  Google Scholar 

  563. Buhrer M, Maitre PO, Crevoisier C, Stanski DR. Electroencephalographic effects of benzodiazepines. II. Pharmacodynamic modeling of the electroencephalographic effects of midazolam and diazepam. Clin Pharmacol Ther. 1990;48:555–67.

    Article  CAS  PubMed  Google Scholar 

  564. Wolf AR, Blackwood B, Anderson B. Tolerance to sedative drugs in PICU: can it be moderated or is it immutable? Intensive Care Med. 2016;42:278–81.

    Article  PubMed  Google Scholar 

  565. Johnson TN, Rostami-Hodjegan A, Goddard JM, Tanner MS, Tucker GT. Contribution of midazolam and its 1-hydroxy metabolite to preoperative sedation in children: a pharmacokinetic-pharmacodynamic analysis. Br J Anaesth. 2002;89:428–37.

    Article  CAS  PubMed  Google Scholar 

  566. de Wildt SN, de Hoog M, Vinks AA, Joosten KF, van Dijk M, van den Anker JN. Pharmacodynamics of midazolam in pediatric intensive care patients. Ther Drug Monit. 2005;27:98–102.

    Article  PubMed  Google Scholar 

  567. Hartwig S, Roth B, Theisohn M. Clinical experience with continuous intravenous sedation using midazolam and fentanyl in the paediatric intensive care unit. Eur J Pediatr. 1991;150:784–8.

    Article  CAS  PubMed  Google Scholar 

  568. Lloyd-Thomas AR, Booker PD. Infusion of midazolam in paediatric patients after cardiac surgery. Br J Anaesth. 1986;58:1109–15.

    Article  CAS  PubMed  Google Scholar 

  569. Booker PD, Beechey A, Lloyd-Thomas AR. Sedation of children requiring artificial ventilation using an infusion of midazolam. Br J Anaesth. 1986;58:1104–8.

    Article  CAS  PubMed  Google Scholar 

  570. Lee TC, Charles BG, Harte GJ, Gray PH, Steer PA, Flenady VJ. Population pharmacokinetic modeling in very premature infants receiving midazolam during mechanical ventilation: midazolam neonatal pharmacokinetics. Anesthesiology. 1999;90:451–7.

    Article  CAS  PubMed  Google Scholar 

  571. Harte GJ, Gray PH, Lee TC, Steer PA, Charles BG. Haemodynamic responses and population pharmacokinetics of midazolam following administration to ventilated, preterm neonates. J Paediatr Child Health. 1997;33:335–8.

    Article  CAS  PubMed  Google Scholar 

  572. de Wildt SN, Kearns GL, Hop WC, Murry DJ, Abdel-Rahman SM, van den Anker JN. Pharmacokinetics and metabolism of intravenous midazolam in preterm infants. Clin Pharmacol Ther. 2001;70:525–31.

    Article  PubMed  Google Scholar 

  573. Burtin P, Jacqz-Aigrain E, Girard P, et al. Population pharmacokinetics of midazolam in neonates. Clin Pharm Ther. 1994;56:615–25.

    Article  CAS  Google Scholar 

  574. Jacqz-Aigrain E, Daoud P, Burtin P, Maherzi S, Beaufils F. Pharmacokinetics of midazolam during continuous infusion in critically ill neonates. Eur J Clin Pharmacol. 1992;42:329–32.

    Article  CAS  PubMed  Google Scholar 

  575. Jacqz-Aigrain E, Wood C, Robieux I. Pharmacokinetics of midazolam in critically ill neonates. Eur J Clin Pharmacol. 1990;39:191–2.

    Article  CAS  PubMed  Google Scholar 

  576. Anderson BJ, Larsson P. A maturation model for midazolam clearance. Paediatr Anaesth. 2011;21:302–8.

    Article  PubMed  Google Scholar 

  577. Mulla H, McCormack P, Lawson G, Firmin RK, Upton DR. Pharmacokinetics of midazolam in neonates undergoing extracorporeal membrane oxygenation. Anesthesiology. 2003;99:275–82.

    Article  CAS  PubMed  Google Scholar 

  578. Mathews HM, Carson IW, Lyons SM, et al. A pharmacokinetic study of midazolam in paediatric patients undergoing cardiac surgery. Br J Anaesth. 1988;61:302–7.

    Article  CAS  PubMed  Google Scholar 

  579. Hiller A, Olkkola KT, Isohanni P, Saarnivaara L. Unconsciousness associated with midazolam and erythromycin. Br J Anaesth. 1990;65:826–8.

    Article  CAS  PubMed  Google Scholar 

  580. de Wildt SN, de Hoog M, Vinks AA, van der Giesen E, van den Anker JN. Population pharmacokinetics and metabolism of midazolam in pediatric intensive care patients. Crit Care Med. 2003;31:1952–8.

    Article  PubMed  Google Scholar 

  581. Nishina K, Mikawa K. Clonidine in paediatric anaesthesia. Curr Opin Anaesthesiol. 2002;15:309–16.

    Article  PubMed  Google Scholar 

  582. Bergendahl H, Lonnqvist PA, Eksborg S. Clonidine in paediatric anaesthesia: review of the literature and comparison with benzodiazepines for premedication. Acta Anaesthesiol Scand. 2006;50:135–43.

    Article  CAS  PubMed  Google Scholar 

  583. Ansermino M, Basu R, Vandebeek C, Montgomery C. Nonopioid additives to local anaesthetics for caudal blockade in children: a systematic review. Paediatr Anaesth. 2003;13:561–73.

    Article  PubMed  Google Scholar 

  584. Hall JE, Uhrich TD, Ebert TJ. Sedative, analgesic and cognitive effects of clonidine infusions in humans. Br J Anaesth. 2001;86:5–11.

    Article  CAS  PubMed  Google Scholar 

  585. Marinangeli F, Ciccozzi A, Donatelli F, et al. Clonidine for treatment of postoperative pain: a dose-finding study. Eur J Pain. 2002;6:35–42.

    Article  CAS  PubMed  Google Scholar 

  586. Bernard JM, Hommeril JL, Passuti N, Pinaud M. Postoperative analgesia by intravenous clonidine. Anesthesiology. 1991;75:577–82.

    Article  CAS  PubMed  Google Scholar 

  587. Dollery CT, Davies DS, Draffan GH, et al. Clinical pharmacology and pharmacokinetics of clonidine. Clin Pharmacol Ther. 1976;19:11–7.

    Article  CAS  PubMed  Google Scholar 

  588. Milne B. Alpha-2 agonists and anaesthesia. Can J Anaesth. 1991;38:809–13.

    Article  CAS  PubMed  Google Scholar 

  589. Davies DS, Wing AM, Reid JL, Neill DM, Tippett P, Dollery CT. Pharmacokinetics and concentration-effect relationships of intervenous and oral clonidine. Clin Pharmacol Ther. 1977;21:593–601.

    Article  CAS  PubMed  Google Scholar 

  590. Sumiya K, Homma M, Watanabe M, et al. Sedation and plasma concentration of clonidine hydrochloride for pre-anesthetic medication in pediatric surgery. Biol Pharm Bull. 2003;26:421–3.

    Article  CAS  PubMed  Google Scholar 

  591. Klein RH, Alvarez-Jimenez R, Sukhai RN, et al. Pharmacokinetics and pharmacodynamics of orally administered clonidine: a model-based approach. Horm Res Paediatr. 2013;79:300–9.

    Article  CAS  PubMed  Google Scholar 

  592. De Kock MF, Pichon G, Scholtes JL. Intraoperative clonidine enhances postoperative morphine patient-controlled analgesia. Can J Anaesth. 1992;39:537–44.

    Article  PubMed  Google Scholar 

  593. Kamibayashi T, Maze M. Clinical uses of alpha2 -adrenergic agonists. Anesthesiology. 2000;93:1345–9.

    Article  CAS  PubMed  Google Scholar 

  594. Talke P. Pharmacodynamics of alpha2-adrenoceptor agonists. Best Pract Res Clin Anaesthesiol. 2000;14:271–83.

    Article  CAS  Google Scholar 

  595. Lonnqvist PA, Bergendahl H. Pharmacokinetics and haemodynamic response after an intravenous bolus injection of clonidine in children. Paediatr Anaesth. 1993;3:359–64.

    Article  Google Scholar 

  596. Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14:287–310.

    Article  CAS  PubMed  Google Scholar 

  597. Arndts D, Doevendans J, Kirsten R, Heintz B. New aspects of the pharmacokinetics and pharmacodynamics of clonidine in man. Eur J Clin Pharmacol. 1983;24:21–30.

    Article  CAS  PubMed  Google Scholar 

  598. Arndts D. New aspects of the clinical pharmacology of clonidine. Chest. 1983;83:397–400.

    Article  CAS  PubMed  Google Scholar 

  599. Lonnqvist PA, Bergendahl HT, Eksborg S. Pharmacokinetics of clonidine after rectal administration in children. Anesthesiology. 1994;81:1097–101.

    Article  CAS  PubMed  Google Scholar 

  600. Potts AL, Larsson P, Eksborg S, Warman G, Lonnqvist P-A, Anderson BJ. Clonidine disposition in children; a population analysis. Pediatr Anesth. 2007;17:924–33.

    Article  Google Scholar 

  601. Xie HG, Cao YJ, Gauda EB, Agthe AG, Hendrix CW, Lee H. Clonidine clearance matures rapidly during the early postnatal period: a population pharmacokinetic analysis in newborns with neonatal abstinence syndrome. J Clin Pharmacol. 2011;51:502–11.

    Article  CAS  PubMed  Google Scholar 

  602. Larsson P, Nordlinder A, Henrik TG, et al. Oral bioavailablility of clonidine in children. Pediatr Anesth. 2011;21:335–40.

    Article  Google Scholar 

  603. Ibacache ME, Munoz HR, Brandes V, Morales AL. Single-dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. Anesth Analg. 2004;98:60–3.

    Article  CAS  PubMed  Google Scholar 

  604. Tobias JD. Dexmedetomidine to treat opioid withdrawal in infants following prolonged sedation in the pediatric ICU. J Opioid Manag. 2006;2:201–5.

    Article  PubMed  Google Scholar 

  605. Hayden JC, Doherty DR, Dawkins I, et al. The effectiveness of α2 agonists as sedatives in pediatric critical care: a propensity score-matched cohort study. Crit Care Med. 2019;47:e580–6.

    Article  CAS  PubMed  Google Scholar 

  606. Mason KP, O'Mahony E, Zurakowski D, Libenson MH. Effects of dexmedetomidine sedation on the EEG in children. Paediatr Anaesth. 2009;19:1175–83.

    Article  PubMed  Google Scholar 

  607. O'Mara K, Gal P, Ransom JL, et al. Successful use of dexmedetomidine for sedation in a 24-week gestational age neonate. Ann Pharmacother. 2009;43:1707–13.

    Article  PubMed  Google Scholar 

  608. Bong CL, Tan J, Lim S, et al. Randomised controlled trial of dexmedetomidine sedation vs general anaesthesia for inguinal hernia surgery on perioperative outcomes in infants. Br J Anaesth. 2019;122:662–70.

    Article  CAS  PubMed  Google Scholar 

  609. Ni J, Wei J, Yao Y, et al. Effect of dexmedetomidine on preventing postoperative agitation in children: a meta-analysis. PLoS One. 2015;10(5):e0128450.

    Article  PubMed  PubMed Central  Google Scholar 

  610. Bellon M, LeBot A, Michelet D, et al. Efficacy of intraoperative dexmedetomidine compared with placebo for postoperative pain management: a meta-analysis of published studies. Pain Ther. 2016;5:63–80.

    Article  PubMed  PubMed Central  Google Scholar 

  611. Amula V, Vener DF, Pribble CG, et al. Changes in anesthetic and postoperative sedation-analgesia practice associated with early extubation following infant cardiac surgery: experience from the pediatric heart network collaborative learning study. Pediatr Crit Care med. 2019;20(10):931–9.

    Article  PubMed  PubMed Central  Google Scholar 

  612. Hammer GB, Philip BM, Schroeder AR, Rosen FS, Koltai PJ. Prolonged infusion of dexmedetomidine for sedation following tracheal resection. Paediatr Anaesth. 2005;15:616–20.

    Article  PubMed  Google Scholar 

  613. Walker J, Maccallum M, Fischer C, Kopcha R, Saylors R, McCall J. Sedation using dexmedetomidine in pediatric burn patients. J Burn Care Res. 2006;27:206–10.

    Article  PubMed  Google Scholar 

  614. Fang H, Yang L, Wang X, Zhu H. Clinical efficacy of dexmedetomidine versus propofol in children undergoing magnetic resonance imaging: a metaanalysis. Int J Clin Ep Med. 2015;8:11881–9.

    CAS  Google Scholar 

  615. Sottas CE, Anderson BJ. Dexmedetomidine: the new all-in-one drug in paediatric anaesthesia? Curr Opin Anaesthesiol. 2017;30:441–51.

    Article  CAS  PubMed  Google Scholar 

  616. Hsu YW, Cortinez LI, Robertson KM, et al. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101:1066–76.

    Article  CAS  PubMed  Google Scholar 

  617. Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care—a pooled analysis. Paediatr Anaesth. 2009;19:1119–29.

    Article  PubMed  Google Scholar 

  618. Mason KP, Zurakowski D, Zgleszewski S, Prescilla R, Fontaine PJ, Dinardo JA. Incidence and predictors of hypertension during high-dose dexmedetomidine sedation for pediatric MRI. Paediatr Anaesth. 2010;20:516–23.

    Article  PubMed  Google Scholar 

  619. Potts AL, Anderson BJ, Holford NH, Vu TC, Warman GR. Dexmedetomidine hemodynamics in children after cardiac surgery. Paediatr Anaesth. 2010;20:425–33.

    Article  PubMed  Google Scholar 

  620. Mahmoud M, Radhakrishman R, Gunter J, et al. Effect of increasing depth of dexmedetomidine anesthesia on upper airway morphology in children. Paediatr Anaesth. 2010;20:506–15.

    Article  PubMed  Google Scholar 

  621. Mahmoud M, Gunter J, Donnelly LF, Wang Y, Nick TG, Sadhasivam S. A comparison of dexmedetomidine with propofol for magnetic resonance imaging sleep studies in children. Anesth Analg. 2009;109:745–53.

    Article  CAS  PubMed  Google Scholar 

  622. Sanders RD, Sun P, Patel S, Li M, Maze M, Ma D. Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brain. Acta Anaesthesiol Scand. 2010;54:710–6.

    Article  CAS  PubMed  Google Scholar 

  623. Koo E, Oshodi T, Meschter C, Ebrahimnejad A, Dong G. Neurotoxic effects of dexmedetomidine in fetal cynomolgus monkey brains. J Toxicol Sci. 2014;39:251–62.

    Article  CAS  PubMed  Google Scholar 

  624. Sanders RD, Xu J, Shu Y, et al. Dexmedetomidine attenuates isoflurane-induced neurocognitive impairment in neonatal rats. Anesthesiology. 2009;110:1077–85.

    Article  CAS  PubMed  Google Scholar 

  625. Pancaro C, Segal BS, Sikes RW, et al. Dexmedetomidine and ketamine show distinct patterns of cell degeneration and apoptosis in the developing rat neonatal brain. J Matern Fetal Neonatal Med. 2016;29:3827–33.

    Article  CAS  PubMed  Google Scholar 

  626. Ezzati M, Broad K, Kawano G, et al. Pharmacokinetics of dexmedetomidine combined with therapeutic hypothermia in a piglet asphyxia model. Acta Anaesthesiol Scand. 2014;58:733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  627. Pan W, Lin L, Zhang N, et al. Neuroprotective effects of dexmedetomidine against hypoxia-induced nervous system injury are related to inhibition of NF-kappaB/COX-2 pathways. Cell Mol Neurobiol. 2016;36:1179–88.

    Article  CAS  PubMed  Google Scholar 

  628. Wang L, Liu H, Zhang L, Wang G, Zhang M, Yu Y. Neuroprotection of dexmedetomidine against cerebral ischemia-reperfusion injury in rats: involved in inhibition of NF-kappaB and inflammation response. Biomol Ther. 2017;25:383–9.

    Article  CAS  Google Scholar 

  629. Su F, Nicolson SC, Gastonguay MR, et al. Population pharmacokinetics of dexmedetomidine in infants after open heart surgery. Anesth Analg. 2010;110:1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  630. Mason KP, Zgleszewski SE, Prescilla R, Fontaine PJ, Zurakowski D. Hemodynamic effects of dexmedetomidine sedation for CT imaging studies. Paediatr Anaesth. 2008;18:393–402.

    Article  PubMed  Google Scholar 

  631. Mason KP, Zurakowski D, Zgleszewski SE, et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Paediatr Anaesth. 2008;18:403–11.

    Article  PubMed  Google Scholar 

  632. Hammer GB, Drover DR, Cao H, et al. The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg. 2008;106:79–83.

    Article  CAS  PubMed  Google Scholar 

  633. Coyle DE, Denson DD, Thompson GA, Myers JA, Arthur GR, Bridenbaugh PO. The influence of lactic acid on the serum protein binding of bupivacaine: species differences. Anesthesiology. 1984;61:127–33.

    Article  CAS  PubMed  Google Scholar 

  634. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46:219–25.

    Article  CAS  PubMed  Google Scholar 

  635. Eyres RL. Local anaesthetic agents in infancy. Paediatr Anaesth. 1995;5:213–8.

    Article  CAS  PubMed  Google Scholar 

  636. Valenzuela C, Snyders DJ, Bennett PB, Tamargo J, Hondeghem LM. Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation. 1995;92:3014–24.

    Article  CAS  PubMed  Google Scholar 

  637. Hoerter JA, Vassort G. Participation of the sarcolemma in the control of relaxation of the mammalian heart during perinatal development. Adv Myocardiol. 1982;3:373–80.

    Article  CAS  PubMed  Google Scholar 

  638. Hellstrom-Westas L, Svenningsen NW, Westgren U, Rosen I, Lagerstrom PO. Lidocaine for treatment of severe seizures in newborn infants. II. Blood concentrations of lidocaine and metabolites during intravenous infusion. Acta Paediatr. 1992;81:35–9.

    Article  CAS  PubMed  Google Scholar 

  639. Hellstrom-Westas L, Westgren U, Rosen I, Svenningsen NW. Lidocaine for treatment of severe seizures in newborn infants. I. Clinical effects and cerebral electrical activity monitoring. Acta Paediatr Scand. 1988;77:79–84.

    Article  CAS  PubMed  Google Scholar 

  640. Hattori H, Yamano T, Hayashi K, et al. Effectiveness of lidocaine infusion for status epilepticus in childhood: a retrospective multi-institutional study in Japan. Brain Dev. 2008;30:504–12.

    Article  PubMed  Google Scholar 

  641. Vladimirov M, Nau C, Mok WM, Strichartz G. Potency of bupivacaine stereoisomers tested in vitro and in vivo: biochemical, electrophysiological, and neurobehavioral studies. Anesthesiology. 2000;93:744–55.

    Article  CAS  PubMed  Google Scholar 

  642. Wang GK, Wang SY. Altered stereoselectivity of cocaine and bupivacaine isomers in normal and batrachotoxin-modified Na+ channels. J Gen Physiol. 1992;100:1003–20.

    Article  CAS  PubMed  Google Scholar 

  643. Sheets MF, Hanck DA. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels. J Physiol. 2007;582:317–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  644. Chevrier P, Vijayaragavan K, Chahine M. Differential modulation of Nav1.7 and Nav1.8 peripheral nerve sodium channels by the local anesthetic lidocaine. Br J Pharmacol. 2004;142:576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  645. Bardsley H, Gristwood R, Baker H, Watson N, Nimmo W. A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. Br J Clin Pharmacol. 1998;46:245–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  646. Brisman M, Ljung BM, Otterbom I, Larsson LE, Andreasson SE. Methaemoglobin formation after the use of EMLA cream in term neonates. Acta Paediatr. 1998;87:1191–4.

    Article  CAS  PubMed  Google Scholar 

  647. Mihaly GW, Moore RG, Thomas J, Triggs EJ, Thomas D, Shanks CA. The pharmacokinetics and metabolism of the anilide local anaesthetics in neonates. I. Lignocaine. Eur J Clin Pharmacol. 1978;13:143–52.

    Article  CAS  PubMed  Google Scholar 

  648. Rapp HJ, Molnar V, Austin S, et al. Ropivacaine in neonates and infants: a population pharmacokinetic evaluation following single caudal block. Paediatr Anaesth. 2004;14:724–32.

    Article  PubMed  Google Scholar 

  649. Agarwal R, Gutlove DP, Lockhart CH. Seizures occurring in pediatric patients receiving continuous infusion of bupivacaine. Anesth Analg. 1992;75:284–6.

    Article  CAS  PubMed  Google Scholar 

  650. McCloskey JJ, Haun SE, Deshpande JK. Bupivacaine toxicity secondary to continuous caudal epidural infusion in children. Anesth Analg. 1992;75:287–90.

    Article  CAS  PubMed  Google Scholar 

  651. Vashisht R, Bendon AA, Okonkwo I, et al. A study of the dosage and duration for levobupivacaine infusion by the caudal-epidural route in infants aged 3-6 months. Paediatr Anaesth. 2019;29:161–8.

    Article  PubMed  Google Scholar 

  652. Tucker GT. Pharmacokinetics of local anaesthetics. Br J Anaesth. 1986;58:717–31.

    Article  CAS  PubMed  Google Scholar 

  653. Aarons L, Sadler B, Pitsiu M, Sjovall J, Henriksson J, Molnar V. Population pharmacokinetic analysis of ropivacaine and its metabolite 2',6'-pipecoloxylidide from pooled data in neonates, infants, and children. Brit J Anaesth. 2011;107:409–24.

    Article  CAS  PubMed  Google Scholar 

  654. Veneziano G, Tobias JD. Chloroprocaine for epidural anaesthesia in infants and children. Pediatr Anesth. 2017;27:581–90.

    Article  Google Scholar 

  655. Tobias JD, Rasmussen GE, Holcomb GW III, et al. Continuous caudal anaesthesia with chloroprocaine as an adjunct to general anaesthesia in neonates. Can J Anaesth. 1996;43:69–72.

    Article  CAS  PubMed  Google Scholar 

  656. Veneziano G, Tobias JD. Chloroprocaine for epidural anaesthesia in infants and children. Can J Anaesth. 1996;43:69–72.

    Google Scholar 

  657. Galley HF, Mahdy A, Lowes DA. Pharmacogenetics and anesthesiologists. Pharmacogenomics. 2005;6:849–56.

    Article  CAS  PubMed  Google Scholar 

  658. Bosenberg AT, Bland BA, Schulte Steinberg O, Downing JW. Thoracic epidural anesthesia via caudal route in infants. Anesthesiology. 1988;69:265–9.

    Article  CAS  PubMed  Google Scholar 

  659. Bokesch PM, Castaneda AR, Ziemer G, Wilson JM. The influence of a right-to-left cardiac shunt on lidocaine pharmacokinetics. Anesthesiology. 1987;67:739–44.

    Article  CAS  PubMed  Google Scholar 

  660. Mirkin BL. Developmental pharmacology. Annu Rev Pharmacol. 1970;10:255–72.

    Article  CAS  PubMed  Google Scholar 

  661. Mishina M, Takai T, Imoto K, et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986;321:406–11.

    Article  CAS  PubMed  Google Scholar 

  662. Jaramillo F, Schuetze SM. Kinetic differences between embryonic- and adult-type acetylcholine receptors in rat myotubes. J Physiol. 1988;396:267–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  663. Hesselmans LF, Jennekens FG, Van den Oord CJ, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.

    Article  CAS  PubMed  Google Scholar 

  664. Jaramillo F, Vicini S, Schuetze SM. Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature. 1988;335:66–8.

    Article  CAS  PubMed  Google Scholar 

  665. Goudsouzian NG. Maturation of neuromuscular transmission in the infant. Br J Anaesth. 1980;52:205–14.

    Article  CAS  PubMed  Google Scholar 

  666. Goudsouzian NG, Standaert FG. The infant and the myoneural junction. Anesth Analg. 1986;65:1208–17.

    Article  CAS  PubMed  Google Scholar 

  667. Meretoja OA, Brandom BW, Taivainen T, Jalkanen L. Synergism between atracurium and vecuronium in children. Br J Anaesth. 1993;71:440–2.

    Article  CAS  PubMed  Google Scholar 

  668. Meretoja OA, Taivainen T, Jalkanen L, Wirtavuori K. Synergism between atracurium and vecuronium in infants and children during nitrous oxide-oxygen-alfentanil anaesthesia. Br J Anaesth. 1994;73:605–7.

    Article  CAS  PubMed  Google Scholar 

  669. Meakin G, Shaw EA, Baker RD, Morris P. Comparison of atracurium-induced neuromuscular blockade in neonates, infants and children. Br J Anaesth. 1988;60:171–5.

    Article  CAS  PubMed  Google Scholar 

  670. Meretoja OA, Wirtavuori K, Neuvonen PJ. Age-dependence of the dose-response curve of vecuronium in pediatric patients during balanced anesthesia. Anesth Analg. 1988;67:21–6.

    Article  CAS  PubMed  Google Scholar 

  671. Basta SJ, Ali HH, Savarese JJ, et al. Clinical pharmacology of atracurium besylate (BW 33A): a new non-depolarizing muscle relaxant. Anesth Analg. 1982;61:723–9.

    Article  CAS  PubMed  Google Scholar 

  672. Woelfel SK, Brandom BW, McGowan FX Jr, Cook DR. Clinical pharmacology of mivacurium in pediatric patients less than off years old during nitrous oxide-halothane anesthesia. Anesth Analg. 1993;77:713–20.

    Article  CAS  PubMed  Google Scholar 

  673. Goudsouzian NG, Denman W, Schwartz A, Shorten G, Foster V, Samara B. Pharmacodynamic and hemodynamic effects of mivacurium in infants anesthetized with halothane and nitrous oxide. Anesthesiology. 1993;79:919–25.

    Article  CAS  PubMed  Google Scholar 

  674. Laycock JR, Baxter MK, Bevan JC, Sangwan S, Donati F, Bevan DR. The potency of pancuronium at the adductor pollicis and diaphragm in infants and children. Anesthesiology. 1988;68:908–11.

    Article  CAS  PubMed  Google Scholar 

  675. Fisher DM, Miller RD. Neuromuscular effects of vecuronium (ORG NC45) in infants and children during N2O, halothane anesthesia. Anesthesiology. 1983;58:519–23.

    Article  CAS  PubMed  Google Scholar 

  676. Fisher DM, Castagnoli K, Miller RD. Vecuronium kinetics and dynamics in anesthetized infants and children. Clin Pharmacol Ther. 1985;37:402–6.

    Article  CAS  PubMed  Google Scholar 

  677. Fisher DM, Canfell PC, Spellman MJ, Miller RD. Pharmacokinetics and pharmacodynamics of atracurium in infants and children. Anesthesiology. 1990;73:33–7.

    Article  CAS  PubMed  Google Scholar 

  678. Wierda JM, Meretoja OA, Taivainen T, Proost JH. Pharmacokinetics and pharmacokinetic-dynamic modelling of rocuronium in infants and children. Br J Anaesth. 1997;78:690–5.

    Article  CAS  PubMed  Google Scholar 

  679. Kalli I, Meretoja OA. Infusion of atracurium in neonates, infants and children. A study of dose requirements. Br J Anaesth. 1988;60:651–4.

    Article  CAS  PubMed  Google Scholar 

  680. Alifimoff JK, Goudsouzian NG. Continuous infusion of mivacurium in children. Br J Anaesth. 1989;63:520–4.

    Article  CAS  PubMed  Google Scholar 

  681. Woelfel SK, Dong ML, Brandom BW, Sarner JB, Cook DR. Vecuronium infusion requirements in children during halothane-narcotic-nitrous oxide, isoflurane-narcotic-nitrous oxide, and narcotic-nitrous oxide anesthesia. Anesth Analg. 1991;73:33–8.

    Article  CAS  PubMed  Google Scholar 

  682. Brandom BW, Cook DR, Woelfel SK, Rudd GD, Fehr B, Lineberry CG. Atracurium infusion requirements in children during halothane, isoflurane, and narcotic anesthesia. Anesth Analg. 1985;64:471–6.

    Article  CAS  PubMed  Google Scholar 

  683. Meretoja OA. Neuromuscular blocking agents in paediatric patients: influence of age on the response. Anaesth Intens Care. 1990;18:440–8.

    Article  CAS  Google Scholar 

  684. Stanski DR, Ham J, Miller RD, Sheiner LB. Pharmacokinetics and pharmacodynamics of d-tubocurarine during nitrous oxide-narcotic and halothane anesthesia in man. Anesthesiology. 1979;51:235–41.

    Article  CAS  PubMed  Google Scholar 

  685. Prys-Roberts C, Lloyd JW, Fisher A, al e. Deliberate profound hypotension induced with halothane: studies of haemodynamics and pulmonary gas exchange. Br J Anaesth. 1974;46:105.

    Article  CAS  PubMed  Google Scholar 

  686. Pauca AL, Hopkins AM. Acute effects of halothane, nitrous oxide and thiopentone on upper limb blood flow. Br J Anaesth. 1972;43:326–33.

    Article  Google Scholar 

  687. Meakin G, Walker RW, Dearlove OR. Myotonic and neuromuscular blocking effects of increased doses of suxamethonium in infants and children. Brit J Anaesth. 1990;65:816–8.

    Article  CAS  PubMed  Google Scholar 

  688. Cook DR, Gronert BJ, Woelfel SK. Comparison of the neuromuscular effects of mivacurium and suxamethonium in infants and children. Acta Anaesthesiol Scand Suppl. 1995;106:35–40.

    Article  CAS  PubMed  Google Scholar 

  689. DeCook TH, Goudsouzian NG. Tachyphylaxis and phase II block development during infusion of succinylcholine in children. Anesth Analg. 1980;59:639–43.

    CAS  PubMed  Google Scholar 

  690. Gronert BJ, Brandom BW. Neuromuscular blocking drugs in infants and children. Pediatr Clin North Am. 1994;41:73–91.

    Article  CAS  PubMed  Google Scholar 

  691. Sutherland GA, Bevan JC, Bevan DR. Neuromuscular blockade in infants following intramuscular succinylcholine in two or five per cent concentration. Can Anaesth Soc J. 1983;30:342–6.

    Article  CAS  PubMed  Google Scholar 

  692. Cook DR, Fisher CG. Neuromuscular blocking effects of succinylcholine in infants and children. Anesthesiology. 1975;42:662–5.

    Article  CAS  PubMed  Google Scholar 

  693. Meakin G, McKiernan EP, Morris P, Baker RD. Dose-response curves for suxamethonium in neonates, infants and children. Brit J Anaesth. 1989;62:655–8.

    Article  CAS  PubMed  Google Scholar 

  694. Cook DR. Muscle relaxants in infants and children. Anesth Analg. 1981;60:335–43.

    Article  CAS  PubMed  Google Scholar 

  695. Matteo RS, Lieberman IG, Salanitre E, McDaniel DD, Diaz J. Distribution, elimination, and action of d-tubocurarine in neonates, infants, children, and adults. Anesth Analg. 1984;63:799–804.

    Article  CAS  PubMed  Google Scholar 

  696. Tassonyi E, Pittet JF, Schopfer CN, et al. Pharmacokinetics of pipecuronium in infants, children and adults. Eur J Drug Metab Pharmacokinet. 1995;20:203–8.

    Article  CAS  PubMed  Google Scholar 

  697. Meretoja OA, Erkola O. Pipecuronium revisited: dose-response and maintenance requirement in infants, children, and adults. J Clin Anesth. 1997;9:125–9.

    Article  CAS  PubMed  Google Scholar 

  698. Fisher DM, Canfell PC, Fahey MR, et al. Elimination of atracurium in humans: contribution of Hofmann elimination and ester hydrolysis versus organ-based elimination. Anesthesiology. 1986;65:6–12.

    Article  CAS  PubMed  Google Scholar 

  699. Brandom BW, Stiller RL, Cook DR, Woelfel SK, Chakravorti S, Lai A. Pharmacokinetics of atracurium in anaesthetized infants and children. Br J Anaesth. 1986;58:1210–3.

    Article  CAS  PubMed  Google Scholar 

  700. Imbeault K, Withington DE, Varin F. Pharmacokinetics and pharmacodynamics of a 0.1 mg/kg dose of cisatracurium besylate in children during N2O/O2/propofol anesthesia. Anesth Analg. 2006;102:738–43.

    Article  CAS  PubMed  Google Scholar 

  701. Reich DL, Hollinger I, Harrington DJ, Seiden HS, Chakravorti S, Cook DR. Comparison of cisatracurium and vecuronium by infusion in neonates and small infants after congenital heart surgery. Anesthesiology. 2004;101:1122–7.

    Article  CAS  PubMed  Google Scholar 

  702. Kirkegaard-Nielsen H, Meretoja OA, Wirtavuori K. Reversal of atracurium-induced neuromuscular block in paediatric patients. Acta Anaesthesiol Scand. 1995;39:906–11.

    Article  CAS  PubMed  Google Scholar 

  703. Meakin G, Sweet PT, Bevan JC, Bevan DR. Neostigmine and edrophonium as antagonists of pancuronium in infants and children. Anesthesiology. 1983;59:316–21.

    Article  CAS  PubMed  Google Scholar 

  704. Fisher DM, Cronnelly R, Miller RD, Sharma M. The neuromuscular pharmacology of neostigmine in infants and children. Anesthesiology. 1983;59:220–5.

    CAS  PubMed  Google Scholar 

  705. Meretoja OA, Taivainen T, Wirtavuori K. Cisatracurium during halothane and balanced anaesthesia in children. Paediatr Anaesth. 1996;6:373–8.

    Article  CAS  PubMed  Google Scholar 

  706. Meistelman C, Debaene B, d'Hollander A, Donati F, Saint-Maurice C. Importance of the level of paralysis recovery for a rapid antagonism of vecuronium with neostigmine in children during halothane anesthesia. Anesthesiology. 1988;69:97–9.

    Article  CAS  PubMed  Google Scholar 

  707. Debaene B, Meistelman C, d'Hollander A. Recovery from vecuronium neuromuscular blockade following neostigmine administration in infants, children, and adults during halothane anesthesia. Anesthesiology. 1989;71:840–4.

    Article  CAS  PubMed  Google Scholar 

  708. Bevan JC, Purday JP, Reimer EJ, Bevan DR. Reversal of doxacurium and pancuronium neuromuscular blockade with neostigmine in children. Can J Anaesth. 1994;41:1074–80.

    Article  CAS  PubMed  Google Scholar 

  709. Plaud B, Meretoja O, Hofmockel R, et al. Reversal of rocuronium-induced neuromuscular blockade with sugammadex in pediatric and adult surgical patients. Anesthesiology. 2009;110:284–94.

    Article  CAS  PubMed  Google Scholar 

  710. Robertson EN, Driessen JJ, Vogt M, De Boer H, Scheffer GJ. Pharmacodynamics of rocuronium 0.3 mg kg(-1) in adult patients with and without renal failure. Eur J Anaesthesiol. 2005;22:929–32.

    Article  CAS  PubMed  Google Scholar 

  711. Staals LM, Snoeck MM, Driessen JJ, Flockton EA, Heeringa M, Hunter JM. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth. 2008;101:492–7.

    Article  CAS  PubMed  Google Scholar 

  712. Staals LM, Snoeck MM, Driessen JJ, et al. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010;104:31–9.

    Article  CAS  PubMed  Google Scholar 

  713. Min KC, Bondiskey P, Schulz V, et al. Hypersensitivity incidence after sugammadex administration in healthy subjects: a randomised controlled trial. Br J Anaesth. 2018;121:749–57.

    Article  CAS  PubMed  Google Scholar 

  714. Tadokoro F, Morita K, Michihata N, Fushimi K, Yasunage H. Association between sugammadex and anaphylaxis in pediatric patients: a nested case-control study using a national inpatient database. Pediatr Anesth. 2018;28:654–9.

    Article  Google Scholar 

  715. Morell RC, Berman JM, Royster RI, Petrozza PH, Kelly JS, Colonna DM. Revised label regarding use of succinylcholine in children and adolescents. Anesthesiology. 1994;80:242–5.

    Article  CAS  PubMed  Google Scholar 

  716. Badgwell JM, Hall SC, Lockhart C. Revised label regarding use of succinylcholine in children and adolescents. Anesthesiology. 1994;80:243–5.

    Article  CAS  PubMed  Google Scholar 

  717. Goudsouzian NG. Recent changes in the package insert for succinylcholine chloride: should this drug be contraindicated for routine use in children and adolescents? (Summary of the discussions of the anesthetic and life support drug advisory meeting of the Food and Drug Administration, FDA building, Rockville, MD, June 9, 1994). Anesth Analg. 1995;80:207–8.

    CAS  PubMed  Google Scholar 

  718. Anderson BJ, Brown TC. Anaesthesia for a child with congenital myotonic dystrophy. Anaesth Intensive Care. 1989;17:351–4.

    Article  CAS  PubMed  Google Scholar 

  719. Neitlich HW. Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. J Clin Invest. 1966;45:380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  720. Lockridge O. Genetic variants of human serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol Ther. 1990;47:35–60.

    Article  CAS  PubMed  Google Scholar 

  721. Petitpain N, Argoullon L, Masmoudi K, et al. Neuromuscular blocking agents induced anaphylaxis: results and trends of a French pharmacovigilance survey from 2000 to 2012. Allergy. 2018;73:2224–33.

    Article  CAS  PubMed  Google Scholar 

  722. Ali-Melkkila T, Kanto J, Iisalo E. Pharmacokinetics and related pharmacodynamics of anticholinergic drugs. Acta Anaesthesiol Scand. 1993;37:633–42.

    Article  CAS  PubMed  Google Scholar 

  723. Johr M. Is it time to question the routine use of anticholinergic agents in paediatric anaesthesia? Paediatr Anaesth. 1999;9:99–101.

    Article  CAS  PubMed  Google Scholar 

  724. Rautakorpi P, Manner T, Kanto J. A survey of current usage of anticholinergic drugs in paediatric anaesthesia in Finland. Acta Anaesthesiol Scand. 1999;43:1057–9.

    Article  CAS  PubMed  Google Scholar 

  725. Shaw CA, Kelleher AA, Gill CP, Murdoch LJ, Stables RH, Black AE. Comparison of the incidence of complications at induction and emergence in infants receiving oral atropine vs no premedication. Br J Anaesth. 2000;84:174–8.

    Article  CAS  PubMed  Google Scholar 

  726. Hinderling PH, Gundert-Remy U, Schmidlin O. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. I: Pharmacokinetics. J Pharm Sci. 1985;74:703–10.

    Article  CAS  PubMed  Google Scholar 

  727. Virtanen R, Kanto J, Iisalo E, Iisalo EU, Salo M, Sjovall S. Pharmacokinetic studies on atropine with special reference to age. Acta Anaesthesiol Scand. 1982;26:297–300.

    Article  CAS  PubMed  Google Scholar 

  728. Pihlajamaki K, Kanto J, Aaltonen L, Iisalo E, Jaakkola P. Pharmacokinetics of atropine in children. Int J Clin Pharmacol Ther Toxicol. 1986;24:236–9.

    CAS  PubMed  Google Scholar 

  729. Barrington KJ. The myth of a minimum dose for atropine. Pediatrics. 2011;127:783–4.

    Article  PubMed  Google Scholar 

  730. Eisa L, Passi Y, Lerman J, et al. Do small doses of atropine (<0.1 mg) cause bradycardia in young children? Arch Dis Child 2015;100:684-688.

    Google Scholar 

  731. Hinderling PH, Gundert-Remy U, Schmidlin O, Heinzel G. Integrated pharmacokinetics and pharmacodynamics of atropine in healthy humans. II: Pharmacodynamics. J Pharm Sci. 1985;74:711–7.

    Article  CAS  PubMed  Google Scholar 

  732. Kranke P, Morin AM, Roewer N, Wulf H, Eberhart LH. The efficacy and safety of transdermal scopolamine for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg. 2002;95:133–43.

    Article  CAS  PubMed  Google Scholar 

  733. Alswang M, Friesen RH, Bangert P. Effect of preanesthetic medication on carbon dioxide tension in children with congenital heart disease. J Cardiothorac Vasc Anesth. 1994;8:415–9.

    Article  CAS  PubMed  Google Scholar 

  734. Renner UD, Oertel R, Kirch W. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit. 2005;27:655–65.

    Article  CAS  PubMed  Google Scholar 

  735. Kanto J, Klotz U. Pharmacokinetic implications for the clinical use of atropine, scopolamine and glycopyrrolate. Acta Anaesthesiol Scand. 1988;32:69–78.

    Article  CAS  PubMed  Google Scholar 

  736. Warran P, Radford P, Manford ML. Glycopyrrolate in children. Br J Anaesth. 1981;53:1273–6.

    Article  CAS  PubMed  Google Scholar 

  737. Cozanitis DA, Jones CJ, Erkola O. Anticholinergic premedication in infants: a comparison of atropine and glycopyrrolate on heart rate, demeanor, and facial flushing. Pediatr Pharmacol (New York). 1984;4:7–10.

    CAS  PubMed  Google Scholar 

  738. Meyers EF, Tomeldan SA. Glycopyrrolate compared with atropine in prevention of the oculocardiac reflex during eye-muscle surgery. Anesthesiology. 1979;51:350–2.

    Article  CAS  PubMed  Google Scholar 

  739. Rautakorpi P, Manner T, Ali-Melkkila T, Kaila T, Olkkola K, Kanto J. Pharmacokinetics and oral bioavailability of glycopyrrolate in children. Pharmacol Toxicol. 1998;83:132–4.

    Article  CAS  PubMed  Google Scholar 

  740. Rautakorpi P, Ali-Melkkila T, Kaila T, et al. Pharmacokinetics of glycopyrrolate in children. J Clin Anesth. 1994;6:217–20.

    Article  CAS  PubMed  Google Scholar 

  741. Cohen LH, Thale T, Tissenbaum MJ. Acetylcholine treatment of schizophrenia. Arch Neurol Psychiatry. 1944;51:171–5.

    Article  Google Scholar 

  742. Blanc VF. Atropine and succinylcholine: beliefs and controversies in paediatric anaesthesia. Can J Anaesth. 1995;42:1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, B.J., Lerman, J. (2023). Anesthesia and Ancillary Drugs and the Neonate. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, Cham. https://doi.org/10.1007/978-3-031-25358-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25358-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25357-7

  • Online ISBN: 978-3-031-25358-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics